Full Article - PDF

Published: 2020-10-03

Page: 36-51


Faculty of Life and Natural Sciences, Ibn Khaldoun University, Tiaret, Algeria.


Faculty of Life and Natural Sciences, Ibn Khaldoun University, Tiaret, Algeria.


Faculty of Life and Natural Sciences, Ibn Khaldoun University, Tiaret, Algeria.

*Author to whom correspondence should be addressed.


Lentil (Lens culinaris Medik culinaris) is the main important food legume worldwide and in the Mediterranean areas, it is faced to terminal drought coinciding with its reproductive period and inducing yield losses. The present investigation was conducted on microsperma (Syrie229) and macrosperma (Metropole) varieties of Lentil to evaluate differences in drought tolerance regarding to some morpho- physiological parameters, productivity, seed N and K remobilization. A field Trial was carried out under Rain fed and irrigated conditions using two Lentil varieties (small and large seeds). Results indicated that terminal drought effected all studied parameters, the variety factor was significant only for INN, LA, FSW, NC and KC. The highest grain yield was obtained under irrigated treatment, however, GY depend on environmental conditions and the (water regime× varieties) interaction either on the variety factor or the type of plants. Results showed also the superiority of microsperma type in accumulating more Nitrogen and Potassium to developing seeds.

Keywords: Lentil microsperma and macrosperma varieties, terminal drought, morpho-physiology, yield.

How to Cite



Download data is not yet available.


Thavarajah D, Thavarajah P, Vial E, Gebhart M, Lacher C, Kumar S, Comb GF. Will selenium increase Lentil (Lens culinaris Medik) yield and seed quality? Frontiers in Plant Science. 2015;6:356–364.

Sarker MZ, Hossain A, Teixeira da Silva JA. Timing of first irrigation and split application of nitrogen for improved grain yield of wheat in Old Himalayan Piedmont Plain of Bangladesh. Br. J. Appl. Sc.; 2015.

Blair MW. Mineral bio fortification strategies for food staples. The example of common bean. J. Agric. Food Chem. 2013;61:8287-8294. DOI: 10.1021/jf40077 4y

Zaghoane O, Yousfi M, Boufnar Zaghouane F. La lentille: Un atout stratégique pour la sécurité alimentaire et le développement durable. 2018;175.

Hamadache A. Legumineuses Alimentaires (pois chiche- fève- Lentille). Grandes culture: Principaux itinéraires techniques des principales espèces de grandes cultures cultivées en Algérie et en Afrique du nord (Agricultures conventionnelles). Tome 2. Elements de Phytotechnie Générale. 2014;190.

Mishra BK, Srivastava JP, Lal JP. Drought resistance in lentil (Lens culinaris Medik.) in relation to morphological, physiological parameters and phenological developments. Int. J. Curr. Microbiol. App. Sci. 2018;7(01):2288-2304.

MADR, DSASI. Agricultural Statistics, Series B 2012 for the years 2000-2012.

Fellahi Z, Hannachi A, Bouzerzour H. Analysis of direct and indirect selection and indices in bread wheat (Triticum aestivum L.) segregating progeny. International Journal of Agronomy. 2018;11. Article ID: 8312857. DOI: 10.1155/2018/8312857

Bhandari K, Siddique KHM, Turner NC, Kaur J, Singh S, Agarwal SK, Nayyar H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function and sevely reduces seed yield in lentil. Journal of Crop Inprovement. 2016;30:118-151.

Shrestha R, Turner C, Siddique M, Turner DW. Physiological and seed yield responses to water deficit among lentil genotypes from diverse origins. Aust J Agric Res. 2006;57:903-15.

Mishra BK, Srivastava JP, Lal JP, Sheshshayee MS. Physiological and biochemical adaptation in lentil genotypes under drought stress. Russian J. Plant. Physio. 2016;63(5): 695-708.

Morgil H, Gercek YC, Caliskan M, Cevahir OZ. Investigation of the mechanism of physiological tolerance in lentil (Lens culinaris Medik.) cultivars under drought stress conditions. Eur J Bio. 2017;76(1):31-35.

Sehgal A, Sita K, Bhandari K, et al. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ. 2019;42:198–211. DOI:https://doi.org/10.1111/pce.13328

Mishra BK, Srivastava JP, Lal JP. Drought stress resistance in two diverse genotypes of lentil (Lens culinaris Medik.) imposed at different phenophases. J Food Legume. 2014;27:307-14.

Lisar SYS, Mootafakkerazad R, Hossain MM, Ismail MM, Rahman IMM. Water stress in plants causes effects and responses. Introductory Chapter in Book: Water Stress Published by Tech: Rejeka, Croatia, Editors: Ismail MM, Rahman, Hiroshi, Haseqawa. 2012;1-14.

Lahoual H, Rezzoug W, Boukirat D, Berrabeh H, Rebat N. Water stress effect on physiological, morphological parameters and the yield of five sunflower cultivars (Helianthus annus L.) under greenhouse. Bionature. 2019;39(1):48-58.

Foyer CH, Noctor G. Oxygen processing in photosynthesis: Regulation and signaling. Tansley Review No. 112 New Phytologist. 2012;112:359-88.

Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KHM, Nayyar H. Identification of high‐temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers in Plant Science. 2017;8:744.

Adda A, Soualem B, Labdelli A. Effet du deficit hydrique sur la structure de la zone pilifère des racines séminales du blé dur. Ecology- Environment Rev. 2013;9. ISSN: 1112-5888.

Hassani A. Influence du stress salin et hydrique sur la morphologie, l’anatomie, la physiologie et la biochimie de l’orge (Hordeum Vulgare) et du triticale (Triticosecale Witt); Thèse doctorat d’état en-science; Spécialité: Biologie végétale; Option: Amélioration des plantes, Es –sénia, Université d’Oran; 2008.

Zerrouki M, Regagba Z, Adda A. Study of some mechanisms of tolerance and avoidance of water deficit in barley (Hordeum vulgare L.). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2019;67(6):1503-1512.

Barrs HD, Weatherley PE. A re - examination of the relative turgidity technique of estimating water deficit in leaves. J. BIOL. Sci. 1962;15:412-428. DOI:https://dol.org/10.1071/B19620413

Clark JM, McCaig TN. Excised leaf water retention capability as an indicator of drought resistance of Triticum genotypes. Edit. Canadian. Journal of Plant. Sciences. 1982;62: 571-578.

Arnon DI. Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949;24: 1-15.

Chabalah S, Shabalah L, Vlkrenburg V, Newman J. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J. Experimental Botany. 2005;56(415):1369-1378.

Lafon JP, Tharaud-Prayer G, Levy G. Biologie des plantes cultivées. Tome 1. Org phys de la Nutrition; Ed. Lavoisier. 1996;153.

Lebon E, Pellegrino A, Tardieu F, Lecoeur J. Shoot development in grapevine is affected by the modular branching pattern of the stem and intra and inter-shoot trophic competition. Annals of Botany. 2004;93:263-274.

Kumar N, Singh S, Nandwal AS, Waldia RS, Sharma MK. Genotypic differences in water status, membrane integrity, ionic content, N2-fixing efficiency and dry matter of mung bean nodules under saline irrigation. Physiol Mol Biol Plants. 2008;14:363–368.

Sarker A, Erskn W, Singh M. Variation in shoot and root characteristics and their association with brought tolerance in lentil landraces. Gen. Ress and Crop. Eval. 2005;52(1):89-97.

Fikiru E, Tesfaye Bekele E. Morphological and molecular variation in Ethiopian lentil (Lens culinaris Medikus) varieties. International Journal Genetic Molecular and Biology. 2011;60–67.

Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A. Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza. sativa L.). J. Agron. Crop Sci. 2008;194:325–333.

Gosgrove DJ. Growth of the cell wall. Nature Review. Molecular Cell Biology. 2005;6:850–861.

Tahir F, Hassani A, Kouadria M, Rezzoug W. Study of morpho-physiological and biochemical behavior of cultivated legume (Lens culinaris Medik Ssp culinaris) in Dry Area of Algeria. Ukrainian Journal of Ecology. 2019;9(4):535-541.

Talukda D. Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. J Nat Sc Biol Med. 2013;4(2):396-402.

Idrissi O, Houasli C, Udupa SM, De Keyser E, De Riek J, Van Damme P. Genetic variability for root and shoot traits in a Lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica; 2015. DOI: 10.1007/s10681-015-1373-8

Siddique MRB, Hamid A, Islam MS. Drought stress effect on water relations of wheat. Bot. Bull. Acad. Sin. 2000;41(1):35-39.

Lahoual H, Rezzoug W, Adda A. Water deficit effect on sunflower (Helianthus annuus L.) morphological parameters, yield and yield components under Algeria conditions. Advances in Bioresearch. 2019;10(4): 19-24. DOI:10.15515/abr.0976-4585.10.4.1924

Azzouz F. Réponses morphologiques et biochimiques chez le haricot soumis à un stress hydrique; Magister Thesis. Université d’Oran es Senia Algeria. 2009;82.

Tahir F, Zerrouki M. Effet de la micro morphologie et de la structure de la feuille sur la transpiration chez le blé dur (Triticum durum Desf) en zone semi-aride. Master Thesis. University Ibn Khaldoun Tiaret Algeria. 2014;85.

Bousba R, Ykhlef N, Jekoun A. Water use efficiency and flag leaf photosynthetic in response to water deficit of durum wheat (Triticum durum Desf). World Journal of Agricultural Sciences. 2009;5(5):609-616.

Hirreche Y. Réponses de la luzerne Medicago sativa L au stress hydrique et à la profondeur de semis. Magister Thesis, University of Batna Algeria. 2006;83.

Davies SL, Turner NC, Plta JA, Siddique KHM, Plummer JA. Remobilization of carbon and nitrogen supports seed filling in chickpea subjected to water deficit. Australian Journal of Agricultural Research. 2000;51:855-866.

Suza GM, Cardoso JM, Goncalves AN. Proline content and protein patterns in Eucaliptus grandis shoot submitted to high and low temperature shocks. Brazilian Archives of Biology and Technology. 2004;47(3):355-362.

Triboi E, Martre P, Triboi AM. Environmentally – induced changes of proteins composition for developing grain of wheat are related to changes in total protein content. Journal of Experimental Botany. 2003;84:388-1731.

Gharib A, Farajee H, Kelidari A. The effect of water stress on grain and protein of Spotted (Phaseolus vulgaris L.), cultivar Talash. International Journal of Advanced Biological and Bio Research. 2013;1:940-947.

Liliane MMH, Leonardo CF, Fernando AH, José MG, Elizeu DS, Maria CNDO, Alexandre LN, José RBF, Norman N. Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy. 2017;8(3). DOI: 10.3390/Agronomy 8010003

Shabalah S, Cuin TA. Potassium transport and plant salt tolerance. Plant Physiology. 2008;133:651– 669.

Erchidi AE, Benbella M, Talouizte A. Relation entre certains paramètres contrôlant les pertes en eau et le rendement en grain chez neuf variétés de blé dur soumises au stress hydrique. Options méditerranéennes, série A (Séminaires méditerranéens). 2000;40:279-282.

Morteza AM, Rouhollah A, Adel Dabbagh MJ, Shafaghkalvanegh AA, Javad EP. Yield and yield components of lentil (Lens culinaris Medik.) affected by drought stress and mulch. Interl Joul of Agric and Crop Scs. 2013;5(11):1228-1231. Available:www.ijagcs.com_IJACS/2013/5-11/1228-1231

Idrissi O, Houasli CH, Nasserlhaq N. Comparison of advanced lentil lines under water stress during the flowering and pod formation phase. “Nature et technology Rev”. B. Sciences Agro and Biology. 2012;08: 53-61.