Published: 2022-09-06

DOI: 10.56557/bn/2022/v42i21662

Page: 1-17


Biological Sciences Department, Faculty of Science and Engineering, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe.


Biological Sciences Department, Faculty of Science and Engineering, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe.


Tobacco Research Board (TRB) - Kutsaga Research Station Kutsaga Research Station, Airport Ring Road, P.O.Box-1909, Harare, Zimbabwe.


Tobacco Research Board (TRB) - Kutsaga Research Station Kutsaga Research Station, Airport Ring Road, P.O.Box-1909, Harare, Zimbabwe.


Tobacco Research Board (TRB) - Kutsaga Research Station Kutsaga Research Station, Airport Ring Road, P.O.Box-1909, Harare, Zimbabwe.

*Author to whom correspondence should be addressed.


Tobacco stalks represent a type of abundant renewable resources whereas wood rotting fungi are of renowned industrial interest. This study was aimed at assessing the biotechnological potentiality of indigenous wood rotting fungi on lignin degradation of tobacco stalks. 21 isolates were isolated and screened for phenol red oxidation in Potato Dextrose Agar (PDA) containing 250 µg/mL phenol. 12 isolates oxidized phenol and were compared on decolorization of five dyes; acid fuchsin, indigo carmine, congo red, methyl orange, and malachite green supplemented independently at 250 µg/mL in PDA. Further, In vitro studies were carried out on lignin degradation. The isolates were incubated with ground tobacco stalks and final residual lignin content calculated. Isolate 9, 6 and 2 effectively reduced lignin content from 29.15% to 16.26%. 16.72% and 19.22% respectively, suggesting them as a suitable cost effective mechanism that can be considered for use on lignin degradation in Zimbabwe. The fungal isolates 9, 6 and 2 have great biotechnological potential in the paper industries in both dye discoloration and delignification and hence recommended for biotechnological reduction of pollutants from the paper industry.

Keywords: Decolorization, degradation, IWFRI, lignin cellulosic

How to Cite



Download data is not yet available.


Gao WH, Chen KF, Zeng J, Li J, Yang RD, Yang F, et al. Effects of beating on tobacco stalk mechanical pulp. Cellul Chem Technol. 2012;46(3): 277.

Kumar NV, Rani ME, Centre R, Nadu T, Nadu T. Microbial enzymes in paper and pulp industries for bioleaching application. Research Trends of Microbiology. 2019;1:2-6.

Shakhes J, Marandi MAB, Zeinaly F, Saraian A, Saghafi T. Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. BioResources. 2011;6(4):4481-93.

Huang C, Sun R, Chang HM, Yong Q, Jameel H, Phillips R. Production of dissolving grade pulp from tobacco talk through SO2 -ethanol-water fractionation, alkaline extraction, and bleaching processes. BioRes. 2019; 14(3):5544-58.

DOI: 10.15376/biores.14.3.5544-5558

Apiwatanapiwat W, Siriacha P, Vaithanomsat P. Screening of fungi for decolorization of Wastwater from pulp and paper industry. Agric Nat Resour. 2006;40(5):215-21.

Rajwar D, Joshi S, Rai JPN. Ligninolytic enzymes production and decolorization potential of Native Fungi Isolated from Pulp and paper mill sludge. Nat Environ Pollut Technol. 2016;15(4):1241-8.

Xavier AMRB, Mora Tavares APM, Ferreira R, Amado F. Trametes versicolor growth and laccase induction with by-products of pulp and paper industry. Electron J Biotechnol. 2007;10(3):0.

DOI: 10.2225/vol10-issue3-fulltext-1

Damián-Robles RM, Castro-Montoya AJ, Saucedo-Luna J, Vázquez-Garcidueñas MS, Arredondo-Santoyo M, Vázquez-Marrufo G. Characterization of ligninolytic enzyme production in white-rot wild fungal strains suitable for kraft pulp bleaching. 3 Biotech. 2017;7(5): 319.

DOI: 10.1007/s13205-017-0968-2, PMID 28955616.

Wilberg KQ, Nunes DG, Rubio J. Removal of phenol by enzymatic oxidation and flotation. Braz J Chem Eng. 2000;17(4-7):907-14.


Udayasoorian C, Prabu PC. Biodegradation of phenols by lignolytic fungus Trametes versicolour. J Biol Sci. 2005;5(5):558-61.

Nyanhongo GS, Gomes J, Gübitz G, Zvauya R, Read JS, Steiner W. Production of laccase by a newly isolated strain of Trametes modesta. Bioresour Technol. 2002;84(3): 259-63.

DOI: 10.1016/s0960-8524(02)00044-5, PMID 12118703.

Fukushima RS, Kerley MS, Ramos MH, Porter JH, Kallenbach RL. Comparison of acetyl bromide lignin with acid detergent lignin and Klason lignin and correlation with in vitro forage degradability. Anim Feed Sci Technol. 2015;201:25-37.

DOI: 10.1016/j.anifeedsci.2014.12.007

Torres JM, Dela Cruz TE. Production of xylanases by mangrove fungi from the Philippines and their application in enzymatic pretreatment of recycled paper pulps. World J Microbiol Biotechnol. 2013;29(4):645-55.

DOI: 10.1007/s11274-012-1220-1, PMID 23208600.

Kinnunen A, Maijala P, JArvinen P, Hatakka A. Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol. 2017;6(2):105-15.


Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41(6):941-62.

DOI: 10.1093/femsre/fux049, PMID 29088355.

Kikot GE, Hours RA, Alconada TM. Extracellular enzymes of Fusarium graminearum isolates. Braz Arch Biol Technol. 2010;53(4):779-83.


Ramjegathesh R, Ebenezar EG. Morphological and physiological characters of Alternaria alternata causing leaf blight disease of onion. Int J Plant Pathol. 2012;3(4):34-44.

Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluents: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001;77(3):247-55.

DOI: 10.1016/s0960-8524(00)00080-8, PMID 11272011.

Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87(3):787-99.

DOI: 10.1007/s00253-010-2632-1, PMID 20461510.

Shah M, Afiya H. Introductory chapter: identification and isolation of Trichoderma spp. – their significance in agriculture, human health, industrial and environmental application. In Trichoderma-the most widely used fungicide. IntechOpen; 2019.

Qin X, Sun X, Huang H, Bai Y, Wang Y, Luo H et al. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals. Biotechnol Biofuels. 2017;10(1):103.

DOI: 10.1186/s13068-017-0787-z, PMID 28439296.

Yao J, Jia R, Zheng L, Wang B. Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol Bioprocess Eng. 2013;18(5):868-77.

DOI: 10.1007/s12257-013-0357-6

Lapin VV. Biotechnology in pulp and paper industry. Tselliuloza Bumaga Karton Pulp Pap Board. 2003;11-12:20-3, 64.

Lu F, Lu M, Lu Z, Bie X, Zhao H, Wang Y. Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour Technol. 2008;99(13):5938-41.

DOI: 10.1016/j.biortech.2007.10.051, PMID 18068974.

Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F et al. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol. 2005;8(3):195-204. PMID 16200498.

Meena M, Swapnil P, Upadhyay RS. Isolation, characterization and toxicological potential of Alternaria-mycotoxins (TeA, AOH and AME) in different Alternaria species from various regions of India. Sci Rep. 2017;7(1):8777.

DOI: 10.1038/s41598-017-09138-9, PMID 28821789.

Revankar MS, Lele SS. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem. 2006;41(3):581-8.

DOI: 10.1016/j.procbio.2005.07.019

Carmichael JW. Lacto-fuchsin: A new medium for mounting fungi. Mycologia. 1955;4:611.

Sudova E, Machova J, Svobodova Z, Vesely T. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Vet Merdicina-Praha. 2007;52(12): 527-39.

Błaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jędryczka M. Trichoderma spp. Application and prospects for use in organic farming and industry. J Plant Prot Res. 2014;54(4):309-17.

DOI: 10.2478/jppr-2014-0047

Buchert J, Oksanen T, Pere J, Siika-Aho M. Paper industry. Trichoderma and Gliocladium: enzymes, Biological Control and commercial applications. 1998;2:343.

Garg AP, Roberts JC, McCarthy AJ. Bleach boosting effect of cellulose-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood kraft pulp. Enzyme Microb Technol. 1998;22(7): 594-8.

DOI: 10.1016/S0141-0229(97)00250-0

Goswami RS, Kistler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol. 2004; 5(6):515-25. DOI: 10.1111/j.1364-3703.2004.00252.x, PMID 20565626.

Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M et al. Novel concepts of dissolving pulp production. Cellulose. 2013;20(4): 1547-61.

DOI: 10.1007/s10570-013-9943-1

Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001;56(3-4):326-38.

DOI: 10.1007/s002530100704, PMID 11548999.

Agrupis SC, Maekawa E. Industrial utilization of tobacco stalks (1) Preliminary evaluation for biomass resources. Holzforschung. 1999;53(1): 29-32.

DOI: 10.1515/HF.1999.005

Tsoumis G. Science and technology of wood: structure, properties, utilization. Vol. 115. New York, Van: Nostrand-Reinhold; 1991.

Robertson PKJ. Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Cleaner Prod. 1996;4(3-4):203-12.

DOI: 10.1016/S0959-6526(96)00044-3

Shah S, Nasreen S, Sheikh PA. Cultural and Morphological Characterization of Trichoderma spp. Associated with Green Mold Disease of Pleurotus spp. in Kashmir. Res J Microbiol. 2012;7(2):139-44.

DOI: 10.3923/jm.2012.139.144

Upadhyay P, Shrivastava R, Agrawal PK. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech. 2016; 6(1):15.

DOI: 10.1007/s13205-015-0316-3, PMID 28330085.

Watts R, Dahiya J, Chaudhary K, Tauro P. Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil. 1988;107(1):81-4.

DOI: 10.1007/BF02371547.