MYCOCHEMICALS AND ANTIDIABETIC ACTIVITY OF LIGNOCOLOUS FUNGI – A CRITICAL REVIEW

PDF

Published: 2022-01-15

DOI: 10.56557/bn/2022/v42i11561

Page: 13-30


PRAVEEN KUMAR NAGADESI *

Department of Botany, School of Life Science, St. Joseph’s College (Autonomous), Bangalore, Karnataka, India.

A. STEPHEN

Department of Botany, School of Life Science, St. Joseph’s College (Autonomous), Bangalore, Karnataka, India.

*Author to whom correspondence should be addressed.


Abstract

Plants and fungi have a potential resource of natural compounds used as medicine. They have attracted the attention of humans because of their wide variety of nutraceuticals and biochemicals with bioactivity. A wide variety of mycochemical compounds isolated from different species of lignicolous mushrooms have been identified and their bioactivities like Antimicrobial, Antibacterial, Antiviral, Anthelminthic, Antifungal, Antioxidant, Anticancerous, Antidiabetic, immune boosters, etc. have been reported by different mycologist around the world. The present paper mainly focuses on the antidiabetic mushrooms widely growing in the forest, and cultivation. The lignicolous macro-fungi have different varieties of mycochemical compounds with pharmacological importance; so present papers mainly deal with mycochemicals, antidiabetic activity, and factors affecting the concentration of the mycochemical compounds in wild and cultivated lignicolous macro-fungi.

Keywords: Lignicolous macro - fungi, biochemicals, antidiabetic, mycochemical concentration


How to Cite

NAGADESI, P. K., & STEPHEN, A. (2022). MYCOCHEMICALS AND ANTIDIABETIC ACTIVITY OF LIGNOCOLOUS FUNGI – A CRITICAL REVIEW. BIONATURE, 42(1), 13–30. https://doi.org/10.56557/bn/2022/v42i11561


References

Dewick PM. Medicinal natural products: A biosynthetic approach, 3rd edn. Wiley, Chichester; 2009. Available:https://doi.org/10.1021/jm901204h

Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi, CABI Publishing, Wallingford, UK; 2008.

Labarere J, Gemini U. Collection, Characterization, Conservation and Utilization of Mushrooms Germplasm Resources in Africa. In: Labarere and Gemini (eds) Characterization, Conservation, Evaluation and Utilization of Mushrooms Genetic Resources for Food and Agriculture. The Global Network on Mushrooms, under the aegis of FAO. 2000;17-34.

Kalogeropoulos N, Yanni AE, Koutrotsios G, Aloupi M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food and Chemical Toxicology. 2013; 55:378-385.

Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929;10:226– 236. Available:https://doi.org/10.1093/clinids/2.1.129

Jonathan SG, Fasidi IO. Antimicrobial activities of two Nigerian edible macrofungi- Lycoperdonpusilum and Lycoperdon giganteus. Afri. J. Biom. Res. 2003;6:84–90.

Nwachukwu E, Uzoeto HO. Antimicrobial activity of some local mushrooms on pathogenic isolates. Journal of Medicinal Plants Research. 2010;4:2460-2465.

Kues U, Liu Y. Fruiting body production in basidiomycetes. Application Microbiology and Biotechnology. 2000;54:141-152.

Khan NA, Ajmal M, Inam UL, Haq M, Javed N, Ali MA, Binyamin R, Khan SA. Impact of sawdust using various woods for effective cultivation of oyster mushroom. Pak. J. Bot. 2012;44(1):399-402.

Aida FMNA, Shuhaimi M, Yazid M, Maaruf AG. Mushroom as a potential source of prebiotics: A review. Trends in Food Science & Technology. 2009; 20:567–575.

Chang ST, Mshigeni KE. Mushrooms: Their biology, nutritional and medicinal properties, cultivation technologies, and perspectives on mushroom research and development. University of Namibia, Windhoek, Namibia; 2004a.

Soković M, Ćirić A, Glamočlija J, Stojković D. The bioactive properties of mushrooms. In: Ferreira, I.C.F.R., Morales, P., Barros, L. (Eds.), Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. John Wiley & Sons, Ltd., Chichester, UK. 2016;83–122.

Popović V, Živković J, Davidović S, Stevanović M, Stojković D. Mycotherapy of cancer: an update on cytotoxic and antitumor activities of mushrooms, bioactive principles and molecular mechanisms of their action. Current Topics in Medicinal Chemistry. 2013;13:2791–2806.

Lindequist U. The merit of medicinal mushrooms from a pharmaceutical point of view. International Journal of Medicinal Mushrooms. 2013;15:517–523.

Paterson RR, Lima N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomedical Journal. 2014;37:357–368.

Chang ST. Ganoderma The leader in production and technology of mushroom nutriceuticals. In Proc 6th Int symp. Recent Adv. The pharmaceutical Society of Korea, Seoul, Korea. 1995;43- 52.

Chang ST, Miles PG, Mushrooms biology—a new discipline. Mycologist. 1992;6:64–5.

Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. eCAM Journal. 2005;2: 285–299.

Asatiani MD, Elisashvili V, Songulashvili G, Reznick AZ, Wasser SP. Higher basidiomycetes mushrooms as a source of antioxidants. In: M. Rai& G. Kövics, eds. Progress in Mycology. Jodhpor, India: Scientific Publishers/Springer. 2010;311–326.

Mizuno T, Sakai T, Chihara G. Health foods and medicinal usages of mushrooms, Food Reviews International. 1995;11(1):69-81. DOI: 10.1080/87559129509541020

Russell R, Paterson M. Ganoderma: A therapeutic fungal biofactory. Phytochemistry. 2006;67:1985-2001.

Nagadesi PK, Aravind G, Kannamba B. Taxonomy and Bioactive chemicals from Ganoderma and Phellinus of India. Biological Forum An international Journal. 2016;8(2):240– 246.

Ganesh PN. Studies on wood-inhabiting macrofungi of Kerala. Ph.D. thesis. Calicut University, Calicut; 1998.

Lahiri SK, Gokania RH, Shuklab MD, Modic HA, Santanid DD, Shaha B. Evaluation of antioxidant activity of plant-parasitic macrofungus: Phellinus durissimus (Lloyd) Roy. Eurasian Journal of Analytical Chemistry. 2010; 5(1):32–45.

Azeem U, Dhingra GS, Shri R. Taxonomic, physicochemical and biochemical evaluation of Phellinus allardii (Bres.) S. Ahmad. Asian Journal of Science and Technology. 2016;7(10):3646–3654.

Lee IK, Yun BS. Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotusspp. and their medicinal importance. Journal of Antibiotic. 2011;64:349–359.

Azeem U, Dhingra GS, Shri R. Taxonomy, physicochemical properties and mycochemical composition of wood rotting mushroom Phellinus pachyphloeus (Pat.) Pat. RJLBPCS. 2018;4(2):1-16. DOI: 10.26479/2018.0402.01

Azeem U, Dhingra GS, Shri R. Evaluation of taxonomy, physicochemical parameters, and mycochemical composition of wood decaying Indian fungi Phellinus gilvus (Schwein.) Pat. and Phellinus torulosus (Pers.) Bourdot&Galzin: A Comparative Study. International Journal of Phytopharmacy Research 2018;9(1):17-25.

Chenghom O, Suksringram J, Morakot N. Mineral composition and Germanium contents in some Phellinus mushrooms in the Northeast of Thailand. Current Research in Chemistry. 2010;2(2):24–34.

Nagadesi PK, Babu ND, Suneetha NN, Prasad KSM, Devi PP. Effect of extraction method on mycochemicals and proximate composition of Pyrrhodermanoxium (Corner) L.W. Zhou & Y.C. Dai, (Hymenochaetales, Basidiomycota). Studies in Fungi. 2019;4(1):223–229. DOI: 10.5943/sif/4/1/24

Jiang J, Zhou L, Liu S, Zhou L, Tian X. Species clarification of the medicinal wood-inhabiting fungus Phylloporia (Hymenochaetales, Basidiomycota) in China Phytotaxa. 2020;446(4):209–219.

Fan Y, Chen M, Zhou W, Xu L, Lu L. Current research situation of Phylloporiaribis and its prospects of application and exploitation, 15, Liaoning University of TCM; 2013.

Ribka T, Nagadesi PK, Ponnuru V, Thatha VD, Pratyusha AVKSN. Phenotypical, mycochemicals, proximate composition and antifungal activity of Phylloporiaribis (Schumach) Ryvarden, from India. Journal of Chemical and Pharmaceutical Research. 2021; 13(2):09-17.

Aquino YKDC, Vega LDP, Medrano NRM, Dulay RMR. Mycochemicals, antioxidant and cytotoxic activities of Polyporus grammocephalus Berk (BIL7749). IJBPAS. 2018;7(6):966-975. DOI:https://doi.org/10.31032/IJBPAS/2018/7.6.4455

Alam F, Islam MA, Kamal MA, Gan SH. Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development. Curr Med Chem. 2016; 25:5395–5431.

Friedman M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods. 2016; 5:80.

Zhang JJ, Li Y, Zhou T, Xu DP, Zhang P, Li S, Li HB. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21:938.

Calvo MS, Mehrotra A, Beelman RB, Nadkarni G, Wang L, Cai W, Goh BC, Kalaras MD, Uribarri J. A retrospective study in adults with metabolic syndrome: diabetic risk factor response to daily consumption of Agaricus bisporus (White Button Mushrooms). Plant Foods Hum Nutr. 2016;71:245–251.

Amandip K, Dhingra GS, Shri R. Antidiabetic potential of mushrooms. Asian J Pharm Clin Res. 2015;5:111–125.

Sari M, Prange A, Lelley JI, Hambitzer R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017;216:45–51.

Kumar PMR, Kumar MS, Manivel A, Mohan SYC. Structural characterization and anti-diabetic activity of polysaccharides from Agaricus bisporus mushroom. Research Journal of Phytochemistry. 2018;12(1):14-20.

Jane G. The mushroom feast. London: Penguin; 1975.

Gray AM, Flatt PR. Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J. Endocrinol. 1998;157:259–66.

Liu Y, Fukuwatari Y, Okumura K, Okumura K, Takeda K, Ishibashi K, et al. Immunomodulating Activity of Agaricus brasiliensis KA21 in Mice and in Human Volunteers. Evid Based Complement Alternat Med. 2008;5: 205–219.

Kim YW, Kim KH, Choi HJ, Lee DS.Anti-diabetic activity of beta-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol Lett. 2005; 27:483–7.

Hsu CH, Liao YL, Lin SC, Hwang KC, Chou P. The mushroom Agaricus blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. J Altern Complement Med. 2007;13: 97–102.

Zhong JJ, Bai FW, Zhang W. Biotechnology in China I: From Bioreaction to Bioseparation and Bioremediation, Springer; 2009.

Kiho T, Sobue S, Ukai S. Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of Agrocybe cylindracea. Carbohydr Res. 1994;251:81–7.

Johnny A, Nick S. Mushroom. Kyle Cathie, U.K; 2001.

Yuan Z, He P, Cui J, Takeuchi H. Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quel. on genetically diabetic KK-Ay mice. Biosci Biotechnol Biochem. 1998;62:1898–903.

Ogbole OO, Nkumah AO, Linus AU, Falade MO. Molecular identification, in vivo and in vitro activities of Calvatia gigantea (macro-fungus) as an antidiabetic agent Mycology. 2019;10 (3):166–173. Available:https://doi.org/10.1080/21501203.20191595204

Benjamin DR. Mushrooms: Poisons and panaceas — a handbook for naturalists, mycologists and physicians. New York: WH Freeman and Company; 1995.

Han C, Liu T. A comparison of hypoglycemic activity of three species of basidiomycetes rich in vanadium. Biol Trace Elem Res. 2009;127:177–82.

Georges MH. Healing Mushrooms. Square one publisher. New York, USA; 2007.

Kiho T, Hui J, Yamane A, Ukai S. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol Pharm Bull. 1993;16: 1291–3.

Kiho T, Yamane A, Hui J, Usui S, Ukai S. Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull. 1996;19:294–6.

Lo HC, Tu ST, Lin KC, Lin SC. The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sciences. 2004; 74:2897–908.

Li SP, Zhang GH, Zeng Q. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomed. 2006;13:428–33.

Yang BK, Jung YS, Song CH. Hypoglycemic effects of Ganoderma applanatum and Collybia confluens exo-polymers in streptozotocin-induced diabetic rats. Phytother Res. 2007;21:1066–9.

Liu GT. Recent advances in research of pharmacology and Clinical application of Ganoderma (P. Karst) species (Aphyllophoromycetideae) in China. Int J Med Mushrooms. 1999; 1:63-7.

Zhang HN, Lin ZB. Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmacol Sin. 2004;25:191–5.

Matsuur H, Asakawa C, Kurimoto M, Mizutani J. Alpha-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifolafrondosa. Biosci Biotechnol Biochem. 2002;66:1576–8.

Hong L, Xun M, Wutong W. Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J. Pharm. Pharmacol. 2007;59:575–82.

Lo HC, Hsu TH, Chen CY. Submerged culture mycelium and broth of Grifola frondosa improve glycemic responses in diabetic rats. Am J Chin Med. 2008; 36:265–85.

Wang JC, Hu SH, Wang JT, Chen KS, Chia YC. Hypoglycemic effect of extract of Hericium erinaceus. J Sci Food Agric. 2005;4:641-646.

Park YK, Lee HB, Jeon EJ, Jung HS, Kang MH.Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay. Biofactors. 2004;21: 109–112.

Saar M. Fungi in Khanty folk medicine. J Ethnopharmacol. 1991; 31:175–179.

Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, et al. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol. 2008;118:7-13.

Balaji P, Madhanraj R, Rameshkumar K, Veeramanikandan V, Eyini M, Arun A, Boobalan Thulasinathan, Al Farraj DA, Elshikh MS, Alokda AM, Mahmoud AH, Tack JC, Kim HJ. Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi Journal of Biological Sciences. 2020; 27:913-924.

Lindequist U, Niedermeyer THJ, Julich W. The pharmacological potentials of mushrooms. eCAM. 2005;2:285–299.

Sato T, Tai Y, Nunoura Y, Yajima Y, Kawashima S, Tanaka K. Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulindependent diabetes mellitus to insulin. Biol Pharm Bull. 2002;25: 81–86.

Shu-Ting C, Philip GM. Tremella - increased production by a mixed culture technique. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact (2nd ed.). Boca Raton, Florida: CRC Press; 2004.

Kiho T, Tsujimura Y, Sakushima M, Usui S, UkaiS. Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugakuzasshi. 1994;114:308–15.

Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, et al. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformisand Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol. 2007;75:1257-65.

Nagadesi PK, Kannamba B. Effect of Extraction and Solvent on Mycochemicals and Proximate Composition of Lignicolous Fungi Ganoderma lucidum and G. applanatum: A comparative study. Scirea Journal of Pharmacy. 2019; 3(1):1-24.

Smith JE, Rowan NJ, Sullivan R. Medicinal Mushrooms: Their therapeutic properties and currentmedical usage with special emphasis on cancer treatments. British Library; 2002. Available:https://www.academia.edu/305933/

Boh B, Hodžar D, Dolnièar D, Beroviè M, Pohleven F. Isolation and quantification of triterpenoid acids from Ganoderma applanatum of Istrian origin. Food Technology and Biotechnology. 2000;38(1): 11-18.

Dulay RMR, Ray K, Hou CT. Biocatalysis and Agricultural Biotechnology. 2015a;4:409–415.

Dulay RMR, Flores KS, Tiniola RC, Marquez DHH, Dela Cruz AG, Kalaw SP, Reyes RG. Mycosphere. 2015b; 6(6):659–666.

Dulay RMR, Vicente JJA, Dela Cruz AG, Gagarin JM, Fernando W, Kalaw SP, Reyes RG. Mycosphere. 2016a; 7(2):131–138.

Upadhyay RC, Fritsche W. Advances in Mushroom Biology and Production. In:Rai Dhar and Verma (eds.) Proceedings of the Indian Mushroom Conference, Mushroom Society India. 1997;281–290.

Yang FC, Liau CB. Process Biochemistry. 1998;33(5):547– 553.

Dulay RMR, Ethel Mae G. Cardona, Sofronio P. Kalaw, Renato G. Reyes Optimization of Liquid Culture Conditions of Coprinopsis cinerea as Natural Source of Bioactive Compounds. Der Pharma Chemica. 2016b;8(18):313-319.

Nagadesi PK, Kannamba B. Effect of extraction and solvent on mycochemicals and proximate composition of lignicolous fungi Ganoderma lucidum and G. applanatum: A Comparative Study. SCIREA Journal of Pharmacy. 2019;3 (1):1-24.

Singh R, Dhingra GS, Shri R. A comparative study of taxonomy, physicochemical parameters, and chemicalconstituents of Ganoderma lucidum and G. philippii from Uttarakhand, India Turkish Journal of Botany. 2014;38:186-196. DOI:10.3906/bot-1302-39

Singh R, Singh AP, Dhingra GS, Shri R. Taxonomy, physicochemical evaluation and chemical investigation of Ganoderma applanatum and G. brownie. International Journal of Advanced Research. 2014;2(5):702-711.

Mane RS, Londe HS, Neela FA. Anticancer activity andmycochemical analysis of Agaricus bisporous by Revealing their Physicochemical Nature. Journal of Scientist Research. 2022;1(1). Doi.org/10.5281/zenodo.584436

Romorosa ES, De Guzman CT, Martin JRG, Jacob JKS. Preliminary investigation on the pharmacological properties of wood-rotting mushrooms collected from Isabela State University, Echague, Isabela, Philippines. International Journal of Agricultural Technology. 2017;13(7.3): 2591-2596.

Panchak LV, Ya Antonyuk L, Zyn AR, Antonyuk V. Extractive substances of fruit body Golden Chanterelle (Cantharellus cibarius Fr.) and Hedgehog mushroom (Hydnum repandum Fr.). Emirates Journal of Food and Agriculture. 2020;32:826-834. Available:https://doi.org/10.9755/ejfa.2020.v32.i11.2195.

Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G. Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia. Molecules. 2020;25:1972. Available:https://doi.org/10.3390/molecules25081972.

Kalaw SP, Albinto RF. Functional activities of Philippine wild strain of Coprinus comatus (O. F. Müll.: Fr.) Pers. and Pleurotus cystidiosus O. K. Miller. grown on rice straw based substrate formulation. Mycosphere. 2014;5(5): 646–655.

Kumar A, Ali S, Lal SB, Sinha MP. Mycochemical screening and determination of nutritive potency and antioxidant activity of edible macro-fungi Dacryopinax spathularia (Schwein) And Schizophyllum commune (Fries). World Journal of Pharmaceutical Research. 2018; 7(16):1311-1321.

Hoque N, Al-Faysal A, Ahmed I, Akanda Md. R, Chowdhury NS. In vitro antioxidant, antimicrobial and cytotoxic activities of the various extracts of Ganoderma lucidum available in Bangladesh. Journal of Pharmacognosy and Phytochemistry. 2015;4(3):42-46.

Devi LS, Chakraborty M, Chakraborty C, Borthakur SK, Sing NI. In vitro antioxidant activity and phytochemical analysis of ethanolic extract of Lentinus conatus. J. Chem. Pharm. Res. 2014;6(5):1302-1309.

Austria AB, Dulay RMR, Pambid RC. Mycochemicals, antioxidant and antidiabetic properties of Philippine sawgill mushroom Lentinus swartzii (Higher Basidiomycetes). Asian J. Agric. Biol. 2021;2:202006365. DOI:https://doi.org/10.35495/ajab.2020.06.365.

Delgado YB, Quevedo HM, Domínguez DO, Corbal PB, Maury GL. Composiciónmicoquímica y actividadantioxidante de la seta Pleurotus ostreatus en diferentes estados de crecimiento. Acta Biol Colomb. 2021;26(1):89-98. DOI:http://dx.doi.org/10.15446/abc.v26n1.84519

Panda MK, Das SK, Mohapatra S, Debata PR, Tayung K, Thatoi H. Mycochemical composition, bioactivities, and phylogenetic placement of three wild edible Russula species from Northern Odisha, India, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology; 2020. DOI:10.1080/11263504.2020.1813829

Wahiba B, Zahra HK. Mycochemical contents, Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom from Algeria. South Asian J Exp Biol. 2021;11(5): 605-618. DOI: 10.38150/sajeb.11(5)

Mitra P, Dutta AK, Mandal NC, Acharya K. Phytochemical study and antioxidative property of polyphenol rich fraction from Termitomyces medius. Research J. Pharm. and Tech. 2019;12(9):4287-4294. DOI:10.5958/0974-360X.2019.00737.6.

Mitra P, Mandal NC, Acharya K. Phytochemical characteristics and free radical scavenging activity of ethanolic extract of Termitomyces microcarpus R. Heim. Der Pharmacia Lettre. 2014;6(5):92-98.

Nanglihan KEMV, Dulay RMR, Kalaw SP. Myko-actives and functional activities of Philippine wild mushroom Trametes elegans. International Journal of Biosciences. 2018;13(5): 402-408. Available:http://dx.doi.org/10.12692/ijb/13.5.402-408.

Sharma A, Tiwari RK, Sharma V, Pandey RK, Shukla SS. Antidiabetic activity of an ayurvedic formulation Chaturmukha Rasa: A mechanism based study. J Pharmacopuncture. 2019;22(2):115–121.