PREDICTING HABITAT SUITABILITY OF Pistacia atlantica DESF WITH MAXENT AND GIS IN THE NORTHWESTERN REGIONS OF ALGERIA

PDF

Published: 2021-08-03

Page: 13-23


MOHAMMED DJEBBOURI *

Laboratory of Water Resources and Environment, Department of Biology, Faculty of Science, University of Saida - Dr. Tahar Moulay, Saida, Algeria.

FATIMA ZOHRA YAHIAOUI

Laboratory of Water Resources and Environment, Department of Biology, Faculty of Science, University of Saida - Dr. Tahar Moulay, Saida, Algeria.

MOHAMED TERRAS

Laboratory of Water Resources and Environment, Department of Biology, Faculty of Science, University of Saida - Dr. Tahar Moulay, Saida, Algeria.

*Author to whom correspondence should be addressed.


Abstract

Pistacia atlantica is a tree species, in Algeria that are included in the list of protected species and considered endangered. Prediction of the potential geographic distribution of this species and mapping of the most habitat suitability to promote their introduction are important from the point of view of their conservation and restoration. 23 environmental variables, as well as a total of 296 points of presence were used to predict the potential distribution of Pistacia atlantica in an area of 62 203 km2 using Maxent modelling. The Maxent model was evaluated using the area under the receiver operating characteristic curve (AUC) and the True Skill Statistics (TSS). The model generated was rated excellent (AUC> 0.94, TSS = 0.78). The results of this study present the most appropriate areas of this species and provide a useful reference for the implementation of conservation and management strategies for this species in the study area.

Keywords: Pistacia atlantica Desf, conservation, habitat suitability, Maxent, northwestern regions of Algeria


How to Cite

DJEBBOURI, M., YAHIAOUI, F. Z., & TERRAS, M. (2021). PREDICTING HABITAT SUITABILITY OF Pistacia atlantica DESF WITH MAXENT AND GIS IN THE NORTHWESTERN REGIONS OF ALGERIA. BIONATURE, 41(2), 13–23. Retrieved from https://globalpresshub.com/index.php/BN/article/view/1196

Downloads

Download data is not yet available.

References

Zohary M. A monographical study of the genus Pistacia. Palestine Journal of Botany (Jerusalem Series). 1952; 5(4):187-228.

Benaradj. A. Phyto,ecogical study groups to Pistacia atlantica Desf.in south oranain (South,Western Algeria). PhD Thesis in forestry Sciences, University of Abou Bekr Belkaid, Telemcen, Algéria, 2017;323. (In French: Étude phyto,écologique des groupements à Pistacia atlantica Desf. dans le sud Oranais (Sud,Ouest algérien)).

J.O.R.A. Décret exécutif du 18 janvier 2012 complétant la liste des espèces végétales non cultivées etprotégées, in Journal Official de la République Algérienne. 2012;3-12.

Amara M, Bouazza M, Al-Saghir MG. Anatomical and adaptation features of pistacia atlantica desf. to adverse climate conditions in Algeria. American Journal of Plant Sciences. 2017;8(02):137.

Djebbouri M, Terras M. Floristic diversity with particular reference to endemic, rare or endangered flora in forest formations of Saïda (Algeria). International Journal of Environmental Studies. 2019;1-14.

Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 2005;8(9):993- 1009.

Peterson AT, Soberón J. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação. 2012;10(2):102-107.

Kamyo T, Asanok L. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Science and Technology. 2020;16(1):1-7.

Baruah PS, Deka K, Lahkar L, Sarma B, Borthakur S, Tanti B. Habitat distribution modelling and reinforcement of Elaeocarpus serratus L.-a threatened tree species of Assam, India for improvement of its conservation status. Acta Ecologica Sinica. 2019;39(1):42-49.

Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31(2): 161-175.

Zeng Y, Low BW, Yeo DC. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling. 2016;341:5-13.

Koch R, Almeida-Cortez JS, Kleinschmit B. Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: Combination of modelled plant diversity hot spots and threat patterns. Journal for Nature Conservation. 2017;35:24-39.

Cobben M,Treuren RV,Castañeda-Álvarez NP, Khoury CK,Kik C, Van Hintum TJ. Robustness and accuracy of Maxent niche modelling for Lactuca species distributions in light of collecting expeditions Plant Genet Resour. 2014;13(02):1-9.

Ghareghan F, Ghanbarian G, Pourghasemi HR, Safaeian R. Prediction of habitat suitability of Morina persica L. species using artificial intelligence techniques. Ecological Indicators. 2020;112:106096.

Fick SE, Hijmans RJ. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017;37(12):4302-4315.

Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology. 2003;84(11):2809-2815.

Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot’. Statistician. 2017;56(316):e24.

Yang X-Q, Kushwaha SPS, Saran S, Xu J, Roy PS. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering. 2013;51:83-87.

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006;190(3-4):231-259.

Lee‐Yaw JA, Kharouba HM, Bontrager M, Mahony C, Csergő AM, Noreen AME, Li Q, Schuster R, Angert AL. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecology Letters. 2016;19(6):710-722.

Merow C, Smith MJ, Silander Jr JA. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. 2013;36(10):1058-1069.

Hoffman JD, Narumalani S, Mishra DR, Merani P, Wilson RG. Predicting potential occurrence and spread of invasive plant species along the North Platte River, Nebraska. Invasive Plant Science and Management. 2008;1(4):359-367.

Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology. 2006;43(6):1223-1232.

Yan H, Feng L, Zhao Y, Feng L, Wu D, Zhu C. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Global Ecology and Conservation. 2020;21:e00856.

Khanum R, Mumtaz AS, Kumar S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica. 2013;49:23-31.

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 2011; 17(1):43-57.

Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29(5):773-785.

Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography. 2007;34(1):102-117.

Baldwin RA. Use of maximum entropy modeling in wildlife research. Entropy. 2009;11(4):854-866.

Sharma S, Arunachalam K, Bhavsar D, Kala R. Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants. 2018;10:99-105.

Ifticene-Habani N. Croissance radiale et sensibilité au climat du pistachier de l’Atlas, Pistacia atlantica Desf., en Algérie. Bois & Forets Des Tropiques. 2016;329:3-15.

Quézel P, Médail F, Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier Paris. 2003;572.

Kumar S, Stohlgren TJ. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment. 2009;1(4):94-98.

Djebbouri M, Terras M. Effect of Abiotic factors on seed germination of anacyclus pyrethrum (l.) link, and modeling of habitat suitability in Saida (Algeria). India Journal of Ecology. 2019;46(4):777-782

Labdelli A, Adda A, Bouchenafa N, Rebiai A, Zebib B, Merah O. Study of seed dormancy origins in three atlas pistachio ecotypes (Pistacia atlantica desf.). Applied Ecology and Environmental Research. 2019;17(6):13555-13565.

Deb CR, Jamir N, Kikon ZP. Distribution prediction model of a rare orchid species (Vanda bicolor Griff.) using small sample size. American Journal of Plant Sciences. 2017;8(06):1388.

Benhassaini H, Mehdadi Z, Hamel L, Belkhodja M. Phytoécologie de Pistacia atlantica Desf. subsp. atlantica dans le Nord-Ouest algérien. Science et changements planétaires/Sécheresse. 2007;18(3):199-205.