Main Article Content



The present study was carried out to evaluate in vitro susceptibility of Clostridium perfringens (C. perfringens) to antimicrobial agents. A total of 22 C. perfringens type A strains, previously isolated from intestinal contents of broiler chickens displaying gross lesions suspected to be necrotic enteritis (NE) reared at different locations in Tiaret province, were tested on a panel of 7 antimicrobial agents using the disk diffusion method. The following antibiotics were used: Amoxicillin-Clavulanic acid (Co-amoxiclav); Penicillin G; Bacitracin; Tetracycline; Clindamycin; Trimethoprim-Sulfamethoxazole (Co-trimoxazole); Erythromycin. Our results showed a widespread resistance to multiple antibiotics including Tetracycline (86.36%), Erythromycin (77.27%), Co-trimoxazole (68.18%) and Co-amoxiclav (50%). However, C. perfringens type A isolates tested demonstrated a low resistance to Clindamycin (36.36%), Bacitracine (36.36%) and Penicillin G (31.81%). We concluded that the highest rate of resistance was showed for commonly used antibiotics in comparison with antibiotics used in specific cases.

Clostridium perfringens, necrotic enteritis, antimicrobial susceptibility, broiler chickens, Tiaret.

Article Details

How to Cite
Original Research Article


Huyghebaert G, Ducatelle R, Van Immerseel F. An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal. 2011;187(2):182–188.
DOI: 10.1016/j.tvjl.2010.03.003

Van der Sluis W. Clostridial enteritis is an often underestimated problem. World Poultry. 2000;16:42–43.

Merati R, Temim S, Mohamed AAA. Identification and characterization of Clostridium perfringens isolated from necrotic enteritis in broiler chickens in Tiaret, Western Algeria. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2017;23(4):595-601.
DOI: 10.9775/kvfd.2017.17431

Caly DL, D’Inca R, Auclair E, Drider D. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: A microbiologist’s perspective. Frontiers in Microbiology. 2015;6:1336.
DOI: 10.3389/fmicb.2015.01336

Diaz Carrasco JM, Redondo LM, Redondo EA, Dominguez JE, Chacana AP, Fernandez Miyakawa ME. Use of plant extracts as an effective manner to control Clostridium perfringens induced necrotic enteritis in poultry. BioMed Research International. 2016;15.
DOI: 10.1155/2016/3278359

Wade B, Keyburn A. The true cost of necrotic enteritis. World Poultry. 2015;31:16–17.

Adams V, Han X, Lyras D, Rood JI. Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens. Plasmid. 2018;99:32–39.
DOI: 10.1016/j.plasmid.2018.07.002

Gholamiandehkordi A, Eeckhaut V, Lancriet A, Timbermont L, Bjerrum R, Ducatelle F, Haesebrouck, Van Immerseel F.. Antimicrobial resistance in Clostridium perfringens isolates from broilers in Belgium. Veterinary Research Communications. 2009;33:1031–1037.
DOI: 10.1007/s11259-009-9306-4

Silva OS, Francisco CF, Marcus VR, Carlos AO, Nelson R. Genotyping and antimicrobial susceptibility of Clostridium perfringens isolated from Tinamidae, Cracidae and Ramphastidae species in Brazil. Ciência Rural. 2014;44:486-491.

Park JY, Kim S, Oh JY, Kim HR, Jang I, Lee HS, Kwon YK. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. Poultry Science. 2015;94(6): 1158–1164.
DOI: 10.3382/ps/pev037

Mwangi S, Timmons J, Fitz-Coy S, Parveen S. Characterization of Clostridium perfringens recovered from broiler chicken affected by necrotic enteritis. Poultry Science. 2019;98(1):128–135.
DOI: 10.3382/ps/pey332

Eid S, El Atfehy NM, Amer F, Tolba HN, Hamed RI. Prevention of necrotic enteritis in broiler chickens by prebiotics and probiotics vs control by antibiotics, in vivo study. Alexandria Journal of Veterinary Sciences. 2020;64(1):143-153.
DOI: 10.5455/ajvs.76994

Cruickshank R, Duguid JP, Marimo BR, Swain RH. Medical microbiology, 12th Ed. Vol. II, Churchill Livingstone, Edinburgh, London and New York; 1975.

Harmon S. Clostridium perfringens: Enumeration and identification. In, FDA Bacteriological Analytical Manual. Association of Official Analytical Chemists. 1701-1710, Arlington, VA; 1984.

Mojtaba A, Majid E, Mehrdad SB, Maryam A. Antibiotic susceptibility of Clostridium perfringens from organic broiler chickens. Online Journal of Veterinary Research. 2015;19(7):465-470.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Micro-biology and Infection. 2012;18(3):268–281.

Johansson A, Greko C, Engstrom BE, Karlsson M. Antimicrobial susceptibility of Swedish, Norwegian and Danish isolates of Clostridium perfringens from poultry and distribution of Tetracycline resistance genes. Veterinary Microbiology. 2004;99(3-4):251-257.
DOI: 10.1016/j.vetmic.2004.01.009

Gharaibeh S, Al Rifai R, Al-Majali A. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens. Anaerobe. 2010;16(6):586–589.
DOI: 10.1016/j.anaerobe.2010.10.004

Slavic D, Boerlin P, Fabri M, Klotins KC, Zoethout JK, Weir PE. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine and Turkey origin from Ontario. Canadian Journal of Veterinary Research. 2011;75(2):89–97.

Shojadoost B, Peighambari SM, Nikpiran H. Isolation, identification and antimicrobial susceptibility of Clostridium perfringens isolates from acute necrotic enteritis of broiler chickens. International Journal of Veterinary Research. 2010;4(3):147–151.

Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, application, molecular biology and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews. 2001;65(2):232-260.

Park M, Rafii F. The prevalence of plasmid-coded cpe enterotoxin, β2 toxin, tpeL toxin, and tetracycline resistance in Clostridium perfringens strains isolated from different sources. Anaerobe. 2019;56:124-129.
DOI: 10.1016/j.anaerobe.2019.02.007

Mehdizadeh Gohari I, Boerlin P, Prescott JF. Antimicrobial susceptibility and clonal relationship of tetracycline resistance genes in netF-positive Clostridium perfringens. Microbial Drug Resistance. 2019;25(4):627-630.
DOI: 10.108 9/ mdr.2 018.0 341

Osman KM, Elhariri M. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Review of Science and Technology. 2013;32(2):841-850.
DOI: 10.20506/rst.32.2.2212

Llanco LA, Nakano V, Ferreira AJP, Avila-Campos MJ. Toxinotyping and antimicrobial susceptibility of Clostridium perfringens isolated from broiler chickens with necrotic enteritis. International Journal of Microbiology Research. 2012;4(7): 290–294.
DOI: 10.9735/0975-5276.4.7.290-294

Kiu R, Brown J, Bedwell H, Leclaire C, Caim S, Pickard D, Dougan G, Dixon RA, Hall LJ. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Animal Microbiome. 2019;1:12.
DOI: 10.1186/s 42523-019-0015-1

Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: A review. Frontiers in Veterinary Science. 2017;4:126.
DOI: 10.3389/fvets.2017.00126