Malaria Vaccines Targeting Pfs25 Antigen in Parasite Mosquito Stages to Block Transmission

Hartono

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Makassar 90224, Indonesia.

Rif’at Hanifah

Undergraduate Program, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia.

Yenni Yusuf *

Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia.

*Author to whom correspondence should be addressed.


Abstract

Transmission of malaria involves Anopheles mosquitoes as the vectors of the Plasmodium parasite. The malaria eradication program includes the distribution of insecticide-treated bednets. However, the Anopheles mosquitoes have developed insecticide resistance hence it is necessary to find other modalities to eradicate the disease. Because the parasites undergo several stages in the mosquito midgut before developing into infective stages that migrate to the salivary gland, it is of interest to target the mosquito stages in vaccination to block the transmission. Human vaccination with the antigen of the mosquito stages may induce the production of specific antibodies against the stages that might be transferred into the mosquito during blood meal, binding with the antigen of the mosquito stages in the midgut and subsequently disrupting the development of the parasite. Such a vaccine is called a transmission-blocking vaccine (TBV). An effective TBV should induce a  high titer of antibody for a long time. One of the leading antigens is Pfs25. Here, we review the update of TBV development targeting Pfs25, advances in the transmission-blocking assay, and challenges in the development of TBVs.

Keywords: TBV, Pfs25, malaria, plasmodium, mosquito stages, TBA


How to Cite

Hartono, Hanifah, R., & Yusuf, Y. (2024). Malaria Vaccines Targeting Pfs25 Antigen in Parasite Mosquito Stages to Block Transmission. BIONATURE, 44(2), 11–19. https://doi.org/10.56557/bn/2024/v44i22039


References

WHO. World malaria report; 2023, 30 November 2023. Retrieved 18 June 2024, from

Available:https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023

Duffy PE, Kaslow DC. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect Imm. 1997;65(3):1109.

Alsulami MN. Eradication of Malaria: Present situations and new strategies. J. Pharm. Res. Int. 2021, Oct 23;33(47A):17-3. [cited 2024 Jun. 15] Available:https://journaljpri.com/index.php/JPRI/article/view/3790

Nassar A, Adedokun AA, Onosakponome EO, Adegun OJ, Bakare SA, Ayodele EA. The efficacy of bio-synthesized silver nanoparticles with carica papaya extract against plasmodium berghei infected mice. J. Adv. Med. Med. Res. 2022, Dec 5;34(23):482-95. [cited 2024 Jun. 15] Available:https://journaljammr.com/index.php/JAMMR/article/view/4885

Li Y, Leneghan DB, Miura K, Nikolaeva D, Brian IJ, Dicks MD, Fyfe AJ, Zakutansky SE, de Cassan S, Long CA, Draper SJ. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Scientific Reports. 2016, Jan 8;6(1):18848.

Menon V, Kapulu MC, Taylor I, Jewell K, Li Y, Hill F, Long CA, Miura K, Biswas S. Assessment of antibodies induced by multivalent transmission-blocking malaria vaccines. Frontiers in immunology. 2018, Jan 19;8:291049.

Institute of Medicine (US) Committee for the study on malaria prevention and control. Parasite Biology. Malaria: Obstacles and Opportunities. MV Oaks SC Jr, Pearson GW, et al. Washington DC, National Academies Press; 1991;6.

Aly ASI, Vaughan AM, Kappe SHI. Malaria parasite development in the mosquito and infection of the mammalian host. Ann Rev Microbiol. 2009;63:195-221.

Miura K, Keister DB, Muratova OV, Sattabongkot J, Long CA, Saul A. Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer. Malar J. 2007;6(1):107.

Miura K, Takashima E, Deng B, Tullo G, Diouf A, Moretz SE, Nikolaeva D, Diakite M, Fairhurst RM, Fay MP, Long CA, Tsuboi T. Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay. Infect Imm. 2013;81(12):4377.

Brod F, Miura K, Taylor I, Li Y, Marini A, Salman AM, Spencer AJ, Long CA, Biswas S. Combination of rts,s and pfs25-imx313 induces a functional antibody response against malaria infection and transmission in mice. Front Imm. 2013;9:2780.

Kaslow DC. Efforts to Develop Pfs25 Vaccines. Am J Trop Med Hyg. 2022;tpmd211326.

Kaslow DC, Quakyi IA, Syin C, Raum MG, Keister DB, Coligan JE, McCutchan TF, Miller LH. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature. 1988;333(6168):74-6.

Scally SW, McLeod B, Bosch A, Miura K, Liang Q, Carroll S, Reponen S, Nguyen N, Giladi E, Rämisch S, Yusibov V, Bradley A, Lemiale F, Schief WR, Emerling D, Kellam P, King CR, Julien JP. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25. Nat Commun. 2017;8(1):1568.

Sauerwein RW, Bousema T. Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine. 2015;33(52):7476-7482.

Baton LA, Ranford-Cartwright LC. Do malaria ookinete surface proteins P25 and P28 mediate parasite entry into mosquito midgut epithelial cells? Malar J. 2005;4:15.

Saxena AK, Singh K, Su HP, Klein MM, Stowers AW, Saul AJ, Long CA, Garboczi DN. The essential mosquito-stage P25 and P28 proteins from Plasmodium form tile-like triangular prisms. Nat Struct Mol Biol. 2006;13(1):90-1.

Stowers AW, Keister DB, Muratova O, Kaslow DC. A region of Plasmodium falciparum antigen Pfs25 that is the target of highly potent transmission-blocking antibodies. Infect Immun. 2000;68:5530–8.

Zhu D, Wu Y, McClellan H, Dai W, Rausch K, Jones D, Aebig J, Barnafo E, Butler B, Lambert L, Narum DL, Duffy PE. Accelerated and long term stability study of Pfs25-EPA conjugates adjuvanted with Alhydrogel®. Vaccine. 2017;35(24):3232-3238.

Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, Rausch KM, Zhu D, Muratova O, Herrera R, Anderson C, Jones D, Aebig J, Brockley S, MacDonald NJ, Wang X, Fay MP, SA Healy AP, Durbin DL, Narum Ywu, Duffy PE. Safety and immunogenicity of pfs25-epa/alhydrogel®, a transmission blocking vaccine against Plasmodium falciparum: an open label study in malaria naïve adults. Plos One. 2016;11(10):e0163144.

Healy SA, Anderson C, Swihart BJ, Mwakingwe A, Gabriel EE, Decederfelt H, Hobbs CV, Rausch KM, Zhu D, Muratova O, Herrera R, Scaria PV, MacDonald NJ, Lambert LE, Zaidi I, Coelho CH, Renn JP, Wu Y, Narum DL, Duffy PE. Pfs230 yields higher malaria transmission-blocking vaccine activity than Pfs25 in humans but not mice. J Clin Invest. 2021, Apr 1;131(7):e146221.

Rausch KM, Barnafo EK, Lambert LE, Muratova O, Gorres JP, Anderson C, Narum DL, Wu Y, Morrison RD, Zaidi I, Duffy PE. Preclinical evaluations of Pfs25-EPA and Pfs230D1-EPA in AS01 for a vaccine to reduce malaria transmission. iScience. 2023;26(7):107192.

Scaria PV, Roth N, Schwendt K, Muratova OV, Alani N, Lambert LE, Barnafo EK, Rowe CG, Zaidi IU, Rausch KM, Narum DL, Petsch B, Duffy PE. mRNA vaccines expressing malaria transmission-blocking antigens Pfs25 and Pfs230D1 induce a functional immune response. NPJ Vaccines. 2024;9(1):9.

Hayashi CTH, Cao Y, Clark LC, Tripathi AK, Zavala F, Dwivedi G, Knox J, Alameh MG, Lin PJC, Tam YK, Weissman D, Kumar N. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. NPJ Vaccines. 2022 Dec 1;7(1):155.

DOI:10.1038/s41541-022-00577-8. Erratum in: NPJ Vaccines. 2023;8(1):115.

Chichester JA, Green BJ, Jones RM, Shoji Y, Miura K, Long CA, Lee CK, Ockenhouse CF, Morin MJ, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults. Vaccine. 2018;36(39): 5865-5871.

de Graaf H, Payne RO, Taylor I, Miura K, Long CA, Elias SC, Zaric M, Minassian AM, Silk SE, Li L, Poulton ID, Baker M, Draper SJ, Gbesemete D, Brendish NJ, Martins F, Marini A, Mekhaiel D, Edwards NJ, Roberts R, Vekemans J, Moyle S, Faust SN, Berrie E, Lawrie AM, Hill F, Hill AVS and Biswas S. Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial. Frontiers in Immunology. 2021;12;1–13.

Mulamba C, Williams C, Kreppel K, Ouedraogo JB, Olotu AI. Evaluation of the Pfs25-IMX313/Matrix-M malaria transmission-blocking candidate vaccine in endemic settings. Malar J. 2022;21(1):159.

Sagara I, Healy SA, Assadou MH, Kone M, Swihart BJ, Kwan JL, Fintzi J, Sissoko K, Kamate B, Samake Y, Guindo MA, Doucoure M, Niaré K, Dolo A, Diarra B, Rausch KM, Narum DL, Jones DS, MacDonald NJ, Zhu D, Gorres JP, Imeru A, Mohan R, Thera I, Zaidi I, Salazar-Miralles F, Duan J, Neal J, Morrison RD, Muratova O, Sylla D, O'Connell EM, Wu Y, Hume JCC, Coulibaly MB, Anderson CF, Traore SF, Doumbo OK, Duffy PE. Malaria transmission-blocking vaccines Pfs230D1-EPA and Pfs25-EPA in Alhydrogel in healthy Malian adults; a phase 1, randomised, controlled trial. Lancet Infect Dis. 2023;23(11):1266-1279.

Li Y, Leneghan DB, Miura K, Nikolaeva D, Brian IJ, Dicks MDJ, Fyfe AJ, Zakutansky SE, S de Cassan, Long CA, Draper SJ, AVS Hill, Hill F, Biswas S. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Sci rep. 2016;6:18848-18848.

Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4+ T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol. 2021;12:732667.

McGuire KA, Miura K, Wiethoff CM, Williamson KC. New adenovirus-based vaccine vectors targeting Pfs25 elicit antibodies that inhibit Plasmodium falciparum transmission. Malar J. 2017; 16(1):254.

Goodman AL, Blagborough AM, Biswas S, Wu Y, Hill AV, RE Sinden, Draper SJ. A viral vectored prime-boost immunization regime targeting the malaria pfs25 antigen induces transmission-blocking activity. Plos One. 2011;6(12): e29428.

Diallo M, Touré AM, Traoré SF, Niaré c, Kassambara L, A Konaré, M Coulibaly, M Bagayogo, Beier JC, Sakai RK, Touré YT, Doumbo OK. Evaluation and optimization of membrane feeding compared to direct feeding as an assay for infectivity. Malar J. 2008;7(1): 248.

Miura K, Swihart BJ, Deng B, Zhou L, Pham TP, Diouf A, Burton T, Fay MP, Long CA. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay. Vaccine. 2016; 34(35):4145-4151.

Miura K, Swihart BJ, Fay MP, Kumpitak C, Kiattibutr K, Sattabongkot J, Long CA. Evaluation and modeling of direct membrane-feeding assay with Plasmodium vivax to support development of transmission blocking vaccines. Sci Rep. 2020;10(1):12569.

Yusuf Y, Yoshii T, Iyori M, Mizukami H, Fukumoto S, Yamamoto DS, Emran TB, Amelia F, Islam A, Syafira I, Yoshida S. A viral-vectored multi-stage malaria vaccine regimen with protective and transmission-blocking efficacies. Front Imm. 2019; 10:2412-2412.

Carter R, Mendis KN, Miller LH, Molineaux L, Saul A. Malaria transmission-blocking vaccines--how can their development be supported? Nat Med. 2000;6(3):241-4.

Yusuf Y, Yoshii T, Iyori M, Yoshida K, Mizukami H, Fukumoto S, Yamamoto DS, Alam A, Emran TB, Amelia F, Islam A, Otsuka H, Takashima E, Tsuboi T, Yoshida S. Adeno-associated virus as an effective malaria booster vaccine following adenovirus priming. Front Imm. 2019;10: 730.