Efficient Detection of Soil Nutrient Deficiencies through Intelligent Approaches
P. Ashoka
Agricultural Research Station, University of Agricultural Sciences, Dharwad, Hanumanmatti (p) Ranebennur(tq), Haveri (District)– 581115, Karanataka State, India.
G. J. Avinash
Department of Soil science, Navsari Agricultural University, Navsari, Gujarat, India.
M. T. Apoorva
Department of Soil science, University of Agricultural Sciences Bengaluru, GKVK, Bangalore, Karnataka, India.
Pranav Raj *
Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, India.
M. Sekhar
CASAR, Bharatiya Engineering Science and Technology Innovation University (BESTIU), India.
Sanjay Singh
Department of Plant Pathology, ANDUAT, Kumarganj, Ayodhya, UP, India.
R. Vijay Kumar
SHUATS, Prayagraj, UP, India.
Bal veer Singh *
Department of Agronomy, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, India.
*Author to whom correspondence should be addressed.
Abstract
Exploring the use of intelligent approaches, particularly artificial intelligence (AI) and machine learning (ML), in detecting soil nutrient deficiencies, is a crucial aspect of agriculture. Traditional methods of soil nutrient analysis, although effective, are beset with limitations, including high costs, time-intensiveness, and lack of real-time data. Emerging intelligent approaches address these challenges by providing real-time, accurate data on soil nutrient levels, thereby enabling timely and precise fertilization. Several case studies, including the Indian startups CropIn and Fasal, demonstrate the successful application of these technologies in agriculture, leading to improved crop yields, reduced fertilizer costs, and enhanced sustainability. The article also discusses ongoing research and prospects, highlighting the potential of AI not only in detection but also in predictive analysis. Finally, the piece provides a roadmap for farmers and stakeholders interested in adopting these intelligent approaches, emphasizing the importance of understanding the technology, choosing suitable tools, and fostering a mindset of change and continuous learning. Overall, intelligent approaches to soil nutrient detection promise a more productive, sustainable, and economically viable future in farming.
Keywords: Soil nutrient analysis, artificial intelligence, machine learning, precision agriculture, sustainable farming
How to Cite
Downloads
References
Bennett EM. Nutrient cycling and soil fertility in the grazed pasture ecosystem. In Advanced Series in Agricultural Sciences. Springer. 2013;2:3-42.
Jones JB, Wolf B, Mills HA. Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis, Interpretation, and Use of Plant Analysis Data. MicroMacro Publishing; 2019.
Marschner P. Marschner's mineral nutrition of higher plants. Academic Press; 2012.
White PJ, Brown PH. Plant nutrition for sustainable development and global health. Annals of Botany. 2010;105(7): 1073-1080.
Havlin JL, Beaton JD, Tisdale SL, Nelson WL. Soil fertility and fertilizers: an introduction to nutrient management. Pearson Prentice Hall; 2005.
Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications. 1998;8(3):559-568.
Russell S, Norvig P. Artificial intelligence: A modern approach. Malaysia; Pearson Education Limited; 2016.
Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX. A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture. 2017;143: 23-37.
Bhunia AK. Transforming Indian agriculture with IoT and AI. Electronics for You. 2020;12(2):26-31.
Mulla DJ. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering. 2013;114(4):358-371.
Paredes F, Olivares B, Rey J, Lobo D, Galvis-Causil S. The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. SAINS TANAH - Journal of Soil Science and Agroclimatology. 2021; 18(1):58-64.
Available:http://dx.doi.org/10.20961/stjssa.v18i1.50379
Olivares B. Banana Production in Venezuela: Novel Solutions to Productivity and Plant Health. Springer Nature (in press). 2023;180.
Olivares B, Vega A, Calderón MAR, Rey JC, Lobo D, Gómez JA, Landa BB. Identification of Soil Properties Associated with the Incidence of Banana Wilt Using Supervised Methods. Plants. 2022a; 11(15):2070.
Available:https://doi.org/10.3390/plants11152070
Olivares BO, Rey JC, Perichi G, Lobo D. Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability. 2022b;14: 13531.
Available:https://doi.org/10.3390/su142013531
Lobo D, Olivares B, Rey JC, Vega A, Rueda-Calderón A. Relationships between the Visual Evaluation of Soil Structure (VESS) and soil properties in agriculture: A meta-analysis. Scientia Agropecuaria. 2023;14(1):67-78.
Available:https://doi.org/10.17268/sci.agropecu.2023.007
Calero J, Olivares BO, Rey JC, Lobo D, Landa BB, Gómez JA. Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena. 2022; 208:105718.
Available:https://doi.org/10.1016/j.catena.2021.105718
Olivares B, Rey JC, Lobo D, Navas-Cortés JA, Gómez JA, Landa BB. Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development. Agronomy. 2021;11(5):986.
Available:https://doi.org/10.3390/agronomy11050986
Olivares B, Rey JC, Lobo D, Navas-Cortés JA, Gómez JA, Landa BB. Machine Learning and the New Sustainable Agriculture: Applications in Banana Production Systems of Venezuela. Agricultural Research Updates. Nova Science Publishers, Inc. 2022c;42:133-157.
Vega A, Olivares BO, Rueda Calderón MA, Montenegro-Gracia E, Araya-Almán M, Marys E. Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest. Sustainability. 2022;14:14123.
Available:https://doi.org/10.3390/su142114123
Araya-Alman M, Olivares B, Acevedo-Opazo C, et al. Relationship between soil properties and banana productivity in the Two Main Cultivation Areas in Venezuela. J Soil Sci Plant Nutr. 2020;20(3):2512-2524.
Available:https://doi.org/10.1007/s42729-020-00317-8
López-Beltrán M, Olivares B, Lobo-Luján D. Changes in land use and vegetation in the agrarian community Kashaama, Anzoátegui, Venezuela: 2001-2013. Revista Geográfica De América Central. 2019;2(63):269-291.
DOI: https://doi.org/10.15359/rgac.63-2.10
López M, Olivares B. Normalized Difference Vegetation Index (NDVI) applied to the agricultural indigenous territory of Kashaama, Venezuela. UNED Research Journal. 2019;11(2):112-121.
Available:https://doi.org/10.22458/urj.v11i2.2299
Zingaretti ML, Olivares B. Aplicación de métodos multivariados para la caracterización de periodos de sequía meteorológica en Venezuela. Revista Luna Azul. 2019;48(172):192.
Available:http://dx.doi.org/10.17151/luaz.2019.48.10
Montenegro E, Pitti J, Olivares B. Identification of the main subsistence crops of Teribe: A case study based on multivariate techniques. Idesia. 2021; 39(3):83-94.
Available:http://dx.doi.org/10.4067/S0718-34292021000300083
Calderón AR, Olivares BO, Rey JC. Clasificación de zonas afectadas por la marchitez en banano: una aplicación con algoritmos de Machine Learning en Venezuela. REICIT. 2021;1(1):1-17.
Available:https://revistas.up.ac.pa/index.php/REICIT/article/view/2440
Viloria JA, Olivares BO, García P, Paredes-Trejo F, Rosales A. Mapping Projected Variations of Temperature and Precipitation Due to Climate Change in Venezuela. Hydrology. 2023;10: 96.
Available:https://doi.org/10.3390/hydrology10040096
Olivares BO. Determination of the potential influence of soil in the differentiation of productivity and in the classification of susceptible areas to banana wilt in Venezuela. Doctoral dissertation, Universidad de Córdoba, UCOPress, Spain; 2022.
Zingaretti ML, Olivares B, Demey Zambrano JA, Demey JR. Application of the STATIS-ACT method to the rain regime in the Venezuelan Oriental Region. UNED Research Journal. 2017;9(1):97-106.
Available:https://n9.cl/uej32
Hernández R, Olivares B. Application of multivariate techniques in the agricultural land’s aptitude in Carabobo, Venezuela. Tropical and Subtropical Agroecosystems. 2020;23(2):1-12.
Available:https://n9.cl/zeedh
Orlando B, Pitti J, Montenegro E. Socioeconomic characterization of Bocas del Toro in Panama: An application of multivariate techniques. Revista Brasileira de Gestao e Desenvolvimento Regional. 2020;16(3):59-71.
Available:https://doi.org/10.54399/rbgdr.v16i3.5871
Pitti J, Olivares B, Montenegro E. The role of agriculture in the Changuinola District: A case of applied economics in Panama. Tropical and Subtropical Agroecosystems. 2021;25(1):1-11.
Available:http://dx.doi.org/10.56369/tsaes.3815