Magnetic Field Effect on the Energy Spectra of Indium Phosphide (InP) Quantum dot in D-dimensions with the Hulthen-Yukawa Potential


Published: 2023-02-22

Page: 20-27

Ikechukwu Otete *

Department of Physics, Federal University, Otuoke, Nigeria.

Chinwendu Best Eleje

Department of Computer Science and Informatics, Federal University, Otuoke, Nigeria.

*Author to whom correspondence should be addressed.


In this study, the energy spectra of the two-electron interaction of Indium Phosphide (InP) quantum dot under the influence of magnetic field in D-dimensions are obtained for the Hulthen-Yukawa potential model using the Nikiforov-Uvarov (NU) method. We investigated how the magnetic field, the potential depth and the screening parameter affected the structure of the energy eigenvalues. From our results, we found out that the energy eigenvalues increased as the magnitude of the magnetic field increased. The energy eigenvalues decreased as the potential depth increased. We also found out that increasing the screening parameter enhanced the energy eigenvalues. These findings have not been reported before now with the NU method.

Keywords: Nikiforov-Uvarov method, quantum dot, magnetic field, hulthen-yukawa potential, indium phosphide quantum

How to Cite

Otete, I., & Eleje, C. B. (2023). Magnetic Field Effect on the Energy Spectra of Indium Phosphide (InP) Quantum dot in D-dimensions with the Hulthen-Yukawa Potential. Asian Research Journal of Current Science, 5(1), 20–27. Retrieved from


Download data is not yet available.


Mohan P, Nakajima F, Akabori M, Motohisa J, Fukui T. Fabrication of semiconductor kagome lattice structure by selective area metalorganic vapor phase epitaxy. Appl. Phys. Let. 2003;83:689. Available:

Otete I, Omehen NN. Observable Ground State Singlet-Triplet Transition in Linear Quantum dots.IOSR Journal of Applied Physics. 2018;10(5)Ver.1:85-88.

Boyacioglu B, Saglam M, Chatterjee A. Two-electron singlet states in semiconductor quantum dots with Gaussian confinement. J. Phys.: Condens. Matter. 2007;19(45):6217. DOI: 10.1088/0953-8984/19/45/456217

Hollingsworth JA, Klimov VI. Chapter 1 of Nanocrystal Quantum Dot. 2nd Edition, Ed. By V.I Klimov; 2017.

Smith AM, Nie S. Semiconductor Nanocrystals: Structure, Properties, and Band gap Engineering. Acc. Chem. Res. 2010;16;43(2):190-200. DOI:10.1021/ar9001069

Shaer A, KM, Elhasan M. The magnetic properties of quantum dot in a magnetic field.Turk J. Phys. 2015;40:209-218.

Ikhdair SM, Hamzavi M, Sever R. Spectra of cylindrical quantum dots: The effect of electrical and magnetic fields together with AB flux field. Physica B. 2012;407:4523-4529.

Al-Yousef HA, Sh. M. Khalil. Degeneracy in Magneto-Active Dense plasma Advances in Mathematical Physics. Available:

Boda A, Boyacioglu B, Chatterjee A. Ground state properties of a two-electron system in a three-dimensional GaAs quantum dot with Gaussian confinement in a magnetic field. Journal of Applied Physics. 2013;114:044311. Available:https: //

Jahan KL, Boda A, Shankar IV, Ch. N, Chatterjee A. Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot at finite temperature. Scientific Reports. 2019;8: 5073.

Garcia-Castelan RMG, Choe WS, lee YC. Physical Review B. 1998;57:9792. Available:

Al-Hayek I. The Ground State Electronic Properties of Two electron Quantum dot in External Magnetic and Electric Fields. Applied Physics Research. 2016;8(4).

Fernández FM. Quantum Gaussian wells and barriers. Am. J. Phys. 2011;79(7). Availeble:https://doi:org/10.1119/1.3574505

Gomez SS, Romero RH. Few-electron semiconductor quantum dots with Gaussian confinement. Centr. Eur. J. Phys. 2009;7:12-21. Available:

Saini P, Boda A, Chatterjee A. Effect of Rashba andDresselhaus spin-orbit interactions on a impurity in a two-dimensional Gaussian GaAs quantum dot in the presence of an external magnetic field. Journal of Magnetism and Magnetic Materials. 2019;485:407-412.

Onate CA, Ebomwonyi O, Olanrewaju DB. Application of Schrödinger equation in quantum well of Cu_2 ZnSnS_4quaternary semiconductor alloy. Available: 2020.e04062

Ikhdair SM. Quantization rule solution to the Hulthen potential in arbitrary dimension by a new approximation scheme for the centrifugal term. PhysicaScripta. 2011;83 (025002):7.

Edet CO, Okoi PO, Yusuf AS, Ushie PO. Bound state solutions of the generalized shifted Hulthen potential. Indian Journal of Physics. 2020;1-10.

Edwards JP, Gerber U, Schubert C, Trejo MA, Weber A. The Yukawa potential: ground state energy and critical screening. Prog. Theor. Exp. Phys. 2017;083A01. Available:

Behzadi A, Hajimirghasemi SM. The solution of differential equation with Hulthen potential in a curved space. Science Journal (CSJ). 2017;38(2). Available:http:/ 308364

Ikot AN, Isonguyo CN, Olisa JD, ObongAtom HP. Indonesia. 2014;40(3): 149-155

Ikot AN, Oladunjoye A, Awoga H, Hassanabadi and E. Maghsoodi. Analytical Approximate Solution of Schrödinger Equation in D Dimension with Quadratic Exponential-Type Potential for Arbitrary l-State. Commun. Theor. Phys. 2014;61 457-463. Available:

Edet CO, Okorie US, Ngiangia AT, Ikot AN. Bound State Solutions of the Schrödinger Equation for the modifieldKratzer potential plus screened Coulomb potential. Indian J. Phys. 2019; 94:425-433.

CevdetTezcan, Ramazan Sever. General Approach for the Exact Solution of the Schrödinger Equation. Int J Theor. Phys. 2009;48:337-350. DOI:10.1007/s 1077-008-9806-y

Bing Chen, Dongyu Li and Feng Wang, InP Quantum Dots: Synthesis and lighting Applications. Nano. Micro Small. DOI: 10.1002/smll.202002454