Fixed Point Theorems for Hybrid Contractions in Partial Metric Spaces

Full Article - PDF

Published: 2022-10-12

Page: 657-665


Preeti Bhardwaj

Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana, India.

Manoj Kumar *

Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana, India.

*Author to whom correspondence should be addressed.


Abstract

In this paper, we shall introduce the hybrid contraction of type A and type B and prove fixed point theorems for such contractions in partial metric spaces.

Keywords: Partial metric space, fixed point theorem, hybrid contraction


How to Cite

Bhardwaj, P., & Kumar, M. (2022). Fixed Point Theorems for Hybrid Contractions in Partial Metric Spaces. Asian Journal of Pure and Applied Mathematics, 4(1), 657–665. Retrieved from https://globalpresshub.com/index.php/AJPAM/article/view/1677

Downloads

Download data is not yet available.

References

Ćirić L. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974;45:267–273.

Kannan R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968;60:71–76.

Reich S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971;14:121–124.

Rus IA. Generalized contractions and applications. Cluj University Press: Clui-Napoca, Romania; 2001.

Mustafa Z, Sims B. A new approach to a generalized metric space. Journal of Nonlinear Convex Analysis. 2006;7(2):289-297.

Zeqing L, Wang Li, Shin M, Kang, Kim Y. Fixed point theorems in metric spaces. International Journal of Pure and Applied Mathematics. 2007;38:225-232.

Matthews SG. Partial metric topology. Proceedings of the 8th Summer Conferenceon Topology and its Applications, Annals of the New York Academy of Sciences. 1994;728:183–197.

Alqahtani B, Aydi H, Karapınar E, Rakočević V. A solution for volterra fractional integral equations by hybrid contractions. Mathematics. 2019;7(8):694.

Matthews SG. Partial metric topology, Research report 2012, Deptartment of Com-puter Science, University of Warwick; 1992.

Karapinar E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2018;2:85–87.

Agarwal RP, Karapinar E. Interpolative rus-reich-ciric type contractions via simulation functions. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica; 2019, in press.

Aydi H, Karapinar E, de Hierro AFRL. ω-Interpolative ciric-reich-rus-type contractions. Mathematics. 2019;7:57.

Aydi H, Chen CM, Karapinar E. Interpolative Ciric-Reich-Rus type contractions via the Branciari distance. Mathematics. 2019;7:84.

Karapinar E, Alqahtani O, Aydi H. On interpolative Hardy-Rogers type contractions. Symmetry. 2019;11:8.