Molecular Mechanism of Long Non-Coding RNAs that Involves on Regulation of the Immune System and Gene Expression

PDF Review History

Published: 2024-01-15

Page: 1-16


Temesgen Mitiku *

Department of Medical Biotechnology, Dambi Dollo University, Dambi dollo, Ethiopia.

Betelhem Abebe

Department of Biotechnology University of Gondar, Gondar, Ethiopia.

*Author to whom correspondence should be addressed.


Abstract

Even though RNAs are often seen as connectors between DNA and proteins, transcriptome analysis reveals that only a small portion of the genome is responsible for coding proteins, while the majority is responsible for noncoding RNAs (ncRNAs). Over the past decade, ncRNAs have become increasingly fascinating due to their involvement in various physiological processes. Furthermore, their malfunctioning can have significant implications for several pathologies, including viral infections and antiviral responses. LncRNAs, which are RNA molecules larger than 200 bp, are unable to produce proteins. Numerous studies have shown that lncRNAs play a crucial role in immune and transcription regulation. Specifically, these lncRNAs have the potential to influence innate and adaptive immune responses, impacting immune system regulation at different levels of gene expression through various physiologically relevant interactions such as RNA-DNA, RNA-protein, and RNA-DNA interactions. LncRNAs are found in various immune cells, including monocytes, macrophages, dendritic cells, neutrophils, T cells, and B cells. Although they have been shown to be involved in a range of natural processes, such as gene expression regulation, dosage compensation, and genomic imprinting, there is still limited understanding of how lncRNAs are controlled and how they contribute to cell differentiation and function. This review aims to provide an overview of the functional advancements and action mechanisms of lncRNAs in immune regulation and gene expression, specifically focusing on the molecular mechanisms involved.

Keywords: Gene expression, immune cell, interaction, long non-coding ribose nucleic acid


How to Cite

Mitiku, T., & Abebe, B. (2024). Molecular Mechanism of Long Non-Coding RNAs that Involves on Regulation of the Immune System and Gene Expression. Asian Journal of Research in Biosciences, 6(1), 1–16. Retrieved from https://globalpresshub.com/index.php/AJORIB/article/view/1974

Downloads

Download data is not yet available.

References

Liu C, Bai B, Skogerbø G, Cai L, Deng W, Zhang Y, Bu D, Zhao Y, Chen R. Noncode: An integrated knowledge database of non-coding RNAs. Nucleic Acids Research. 2005;33:D112-D115.

Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, Shah RA, Ganai NA. Long non-coding RNAs: Mechanism of action and functional utility. Non-coding RNA Research. 2016;1:43-50.

Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223-227.

Carpenter S, Fitzgerald KA. Transcription of inflammatory genes: Long noncoding RNA and beyond. Journal of Interferon & Cytokine Research. 2015;35:79-88.

Li Z, Rana TM. Decoding the noncoding: Prospective of lncRNA-mediated innate immune regulation. RNA Biology. 2014;11:979-985.

Wu H, Yang L, Chen L-L. The diversity of long noncoding RNAs and their generation. Trends in Genetics. 2017;33:540-552.

Yin Q-F, Yang L, Zhang Y, Xiang J-F, Wu Y-W, Carmichael GG, Chen L-L. Long noncoding RNAs with snoRNA ends. Molecular Cell. 2012;48:219-230.

Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends in Molecular Medicine. 2014;20:623-631.

Ilott NE, Heward JA, Roux B, Tsitsiou E, Fenwick PS, Lenzi L, Goodhead I, Hertz-Fowler C, Heger A, Hall N, et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nature Communications. 2014;5:1-14.

Cui H, Xie N, Tan Z, Banerjee S, Thannickal VJ, Abraham E, Liu G. The human long noncoding RNA lnc-IL7R regulates the inflammatory response. European Journal of Immunology. 2014;44:2085-2095.

Geng H, Tan X-D. Functional diversity of long non-coding RNAs in immune regulation. Genes & Diseases. 2016;3:72-81.

Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA, Zhu J, Zhao K. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nature Immunology. 2013;14:1190-1198.

Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nature Immunology. 2014;15:484-491.

Hiragami-Hamada K, Fischle W. RNAs—physical and functional modulators of chromatin reader proteins. Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2014;1839:737-742.

Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends in Biochemical Sciences. 2014;39:170-182.

Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, Gingeras TR, Kapranov P, Weissman SM, Newburger PE. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood, The Journal of the American Society of Hematology. 2009;113:2526-2534.

Eklund EA. The role of HOX genes in myeloid leukemogenesis. Current Opinion in Hematology. 2006;13:67-73.

Rice KL, Licht JD. HOX deregulation in acute myeloid leukemia. The Journal of Clinical Investigation. 2007;117:865-868.

Bei L, Lu Y, Bellis SL, Zhou W, Horvath E, Eklund EA. Identification of a HOXA10 activation domain necessary for transcription of the gene encoding β3 integrin during myeloid differentiation. Journal of Biological Chemistry. 2007;282:16846-16859.

Mumtaz PT, Bhat SA, Ahmad SM, Dar MA, Ahmed R, Urwat U, Ayaz A, Shrivastava D, Shah RA, Ganai NA. LncRNAs and immunity: Watchdogs for host-pathogen interactions. Biological Procedures Online. 2017 Dec;19:1-2.

Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M, Lawrence JB. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341:789-792.

Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge R-M, Chang HY. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife. 2013;2:e00762.

Krawczyk M, Emerson BM. P50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. eLife. 2014;3:e01776.

Tong Q, Gong AY, Zhang XT, Lin C, Ma S, Chen J, Hu G, Chen XM. LincRNA-Cox2 modulates TNF-α-induced transcription of IL12B gene in intestinal epithelial cells through regulation of Mi-2/NuRD-mediated epigenetic histone modifications. The FASEB Journal. 2016;30:1187-1197.

Li Z, Chao T-C, Chang K-Y, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM. The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proceedings of the National Academy of Sciences. 2014;111:1002-1007.

Mao A-P, Shen J, Zuo Z. Expression and regulation of long noncoding RNAs in TLR4 signaling in mouse macrophages. BMC Genomics. 2015;16:1-14.

Jiang K, Sun X, Chen Y, Shen Y, Jarvis JN. RNA sequencing from human neutrophils reveals distinct transcriptional differences associated with chronic inflammatory states. BMC Medical Genomics. 2015;8:1-13.

Imamura K, Akimitsu N. Long non-coding RNAs involved in immune responses. Frontiers in Immunology. 2014;5:573.

Wachsmuth M, Caudron-Herger M, Rippe K. Genome organization: Balancing stability and plasticity. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2008;1783:2061-2079.

Olins DE, Olins AL. Chromatin history: Our view from the bridge. Nature Reviews Molecular Cell Biology. 2003;4:809-814.

Beltran M, Yates CM, Skalska L, Dawson M, Reis FP, Viiri K, Fisher CL, Sibley CR, Foster BM, Bartke T. The interaction of PRC2 with RNA or chromatin is mutually antagonistic. Genome Research. 2016;26:896-907.

Engreitz JM, Pandya-Jones A, Mcdonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 2013;341:1237973.

Wang C-Y, Jégu T, Chu H-P, Oh HJ, Lee JT. Smchd1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell. 2018;174:406-421.e25.

Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Molecular Cell. 2009;35:403-413.

Montero JJ, López-Silanes I, Megías D, F Fraga M, Castells-García Á, Blasco MA. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nature Communications. 2018;9:1-14.

Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell. 2010;38:662-674.

Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biology. 2018;19:1-14.

Hübner MR, Eckersley-Maslin MA, Spector DL. Chromatin organization and transcriptional regulation. Current Opinion in Genetics & Development. 2013;23:89-95.

Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends in Genetics. 2011;27:295-306.

Melé M, Rinn JL. “Cat’s cradling” the 3D genome by the act of lncRNA transcription. Molecular Cell. 2016;62:657-664.

Isoda T, Moore AJ, He Z, Chandra V, Aida M, Denholtz M, Van Hamburg JP, Fisch KM, Chang AN, Fahl SP. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell. 2017;171:103-119.e18.

Lefevre P, Witham J, Lacroix CE, Cockerill PN, Bonifer C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Molecular Cell. 2008;32:129-139.

Heinz S, Texari L, Hayes MG, Urbanowski M, Chang MW, Givarkes N, Rialdi A, White KM, Albrecht RA, Pache L. Transcription elongation can affect genome 3D structure. Cell. 2018;174:1522-1536.e22.

Kuang S, Wang L. Identification and analysis of consensus RNA motifs binding to the genome regulator CTCF. NAR Genomics and Bioinformatics. 2020;2:lqaa031.

Paralkar VR, Taborda CC, Huang P, Yao Y, Kossenkov AV, Prasad R, Luan J, Davies JO, Hughes JR, Hardison RC. Unlinking an lncRNA from its associated cis element. Molecular Cell. 2016;62:104-110.

Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002;415:810-813.

Tan JY, Smith AAT, Da Silva MF, Matthey-Doret C, Rueedi R, Sönmez R, Ding D, Kutalik Z, Bergmann S, Marques AC. Cis-acting complex-trait-associated lincRNA expression correlates with modulation of chromosomal architecture. Cell Reports. 2017;18:2280-2288.

Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, Büscher M, Pandolfini L, Zhang A, Pluchino S. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biology. 2018;19:1-21.

Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science. 2012;338:1469-1472.

Stojic L, Niemczyk M, Orjalo A, Ito Y, Ruijter AEM, Uribe-Lewis S, Joseph N, Weston S, Menon S, Odom DT. Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nature Communications. 2016;7:1-14.

Ponjavic J, Oliver PL, Lunter G, Ponting CP. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genetics. 2009;5:e1000617.

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409-419.

Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen L-L, Cherry S, Wilusz JE. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Molecular Cell. 2017;68:940-954.e3.

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell. 2014;56:55-66.

Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nature Plants. 2017;3:1-5.

Morrissy AS, Griffith M, Marra MA. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Research. 2011;21:1203-1212.

Bardou F, Merchan F, Ariel F, Crespi M. Dual RNAs in plants. Biochimie. 2011;93:1950-1954.

Gonzalez I, Munita R, Agirre E, Dittmer TA, Gysling K, Misteli T, Luco RF. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nature Structural & Molecular Biology. 2015;22:370-376.

Beltran M, Puig I, Peña C, García JM, Álvarez AB, Peña R, Bonilla F, De Herreros AG. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes & Development. 2008;22:756-769.

Stork M, Di Lorenzo M, Welch TJ, Crosa JH. Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. Journal of Bacteriology. 2007;189:3479-3488.

Schoenberg DR, Maquat LE. Regulation of cytoplasmic mRNA decay. Nature Reviews Genetics. 2012;13:246-259.

Pratt AJ, MacRae IJ. The RNA-induced silencing complex: A versatile gene-silencing machine. Journal of Biological Chemistry. 2009;284:17897-17901.

Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature. 2011;470:284-288.

Wang J, Gong C, Maquat LE. Control of myogenesis by rodent SINE-containing lncRNAs. Genes & Development. 2013;27:793-804.

Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231-235.

Faghihi MA, Zhang M, Huang J, Modarresi F, Van Der Brug MP, Nalls MA, Cookson MR, St-Laurent G, Wahlestedt C. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biology. 2010;11:1-13.

Yang J-H, Chang M-W, Pandey PR, Tsitsipatis D, Yang X, Martindale JL, Munk R, De S, Abdelmohsen K, Gorospe M. Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Research. 2020;48:12943-12956.

Lee S, Kopp F, Chang T-C, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y, Mendell JT. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164:69-80.

Chen R, Kong P, Zhang F, Shu Y-N, Nie X, Dong L-H, Lin Y-L, Xie X-L, Zhao L-L, Zhang X-J. EZH2-mediated α-actin methylation needs lncRNA TUG1, and promotes the cortex cytoskeleton formation in VSMCs. Gene. 2017;616:52-57.

Pei H, Hu W, Guo Z, Chen H, Ma J, Mao W, Li B, Wang A, Wan J, Zhang J. Long noncoding RNA CRYBG3 blocks cytokinesis by directly binding G-actinLnc CRYBG3 inhibits tumor progress. Cancer Research. 2018;78:4563-4572.

You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature Neuroscience. 2015;18:603-610.

Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. LincRNA-p21 suppresses target mRNA translation. Molecular Cell. 2012;47:648-655.

Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491:454-457.

Miao H, Wang L, Zhan H, Dai J, Chang Y, Wu F, Liu T, Liu Z, Gao C, Li L. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genetics. 2019;15:e1008144.

Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by circPABPN1. RNA Biology. 2017;14:361-369.

Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Research. 2019;29:208-222.

Stein CS, Jadiya P, Zhang X, McLendon JM, Abouassaly GM, Witmer NH, Anderson EJ, Elrod JW, Boudreau RL. Mitoregulin: A lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Reports. 2018;23:3710-3720.e8.

Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 2013;154:240-251.

Carlevaro-Fita J, Rahim A, Guigó R, Vardy LA, Johnson R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA. 2016;22:867-882.

Smith JE, Alvarez-Dominguez JR, Kline N, Huynh NJ, Geisler S, Hu W, Coller J, Baker KE. Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Reports. 2014;7:1858-1866.

Tani H, Torimura M, Akimitsu N. The RNA degradation pathway regulates the function of GAS5, a non-coding RNA in mammalian cells. PloS One. 2013;8:e55684.

Chen C-K, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK. Structured elements drive extensive circular RNA translation. Molecular Cell. 2021;81:4300-4318.e13.

Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310-313.

Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370-381.

Yoon J-H, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, White EJ, Orjalo AV, Rinn JL, Kreft SG. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature Communications. 2013;4:1-14.

Guo C-J, Ma X-K, Xing Y-H, Zheng C-C, Xu Y-F, Shan L, Zhang J, Wang S, Wang Y, Carmichael GG. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell. 2020;181:621-636.e22.

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics. 2007;39:1033-1037.

Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Research. 2012;40:6391-6400.

Saha S, Murthy S, Rangarajan PN. Identification and characterization of a virus-inducible non-coding RNA in mouse brain. Journal of General Virology. 2006;87:1991-1995.

Erdmann V, Barciszewska M, Hochberg A, De Groot N, Barciszewski J. Regulatory RNAs. Cellular and Molecular Life Sciences CMLS. 2001;58:960-977.

Rossetto CC, Pari GS. Pan’s labyrinth: Molecular biology of Kaposi’s sarcoma-associated herpesvirus (KSHV) Pan RNA, a multifunctional long noncoding RNA. Viruses. 2014;6:4212-4226.

Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A viral nuclear noncoding RNA binds re-localized poly (A) binding protein and is required for late KSHV gene expression. PLoS Pathogens. 2011;7:e1002300.

Rossetto CC, Pari GS. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus-and host cell-encoded proteins and suppresses expression of genes involved in immune modulation. Journal of Virology. 2011;85:13290-13297.

Campbell M, Kim KY, Chang P-C, Huerta S, Shevchenko B, Wang D-H, Izumiya C, Kung H-J, Izumiya Y. A lytic viral long noncoding RNA modulates the function of a latent protein. Journal of Virology. 2014;88:1843-1848.

Mattick JS, Makunin IV. Non-coding RNA. Human Molecular Genetics. 2006;15:R17-R29.

Liu AY, Torchia BS, Migeon BR, Siliciano RF. The human NTT gene: Identification of a novel 17-kb noncoding nuclear RNA expressed in activated CD4+ T cells. Genomics. 1997;39:171-184.

Sonkoly E, Bata-Csorgo Z, Pivarcsi A, Polyanka H, Kenderessy-Szabo A, Molnar G, Szentpali K, Bari L, Megyeri K, Mandi Y. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. Journal of Biological Chemistry. 2005;280:24159-24167.

Gomez JA, Wapinski OL, Yang YW, Bureau J-F, Gopinath S, Monack DM, Chang H-Y, Brahic M, Kirkegaard K. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152:743-754.

Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Molecular Cell. 2017;68:808-820.e5.

Namkoong S, Ho A, Woo YM, Kwak H, Lee JH. Systematic characterization of stress-induced RNA granulation. Molecular Cell. 2018;70:175-187.e8.

Pitchiaya S, Mourao MD, Jalihal AP, Xiao L, Jiang X, Chinnaiyan AM, Schnell S, Walter NG. Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Molecular Cell. 2019; 74:521-533.e6.

Tauber D, Tauber G, Khong A, Van Treeck B, Pelletier J, Parker R. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell. 2020;180:411-426.e16.