Molecular Mechanism and Implication of Telomer Length and Transposable Element on Biological Aging


Published: 2023-12-29

Page: 43-58

Temesgen Mitiku *

Department of Medical Biotechnology, Dambi Dollo University, Ethiopia.

Betelhem Abebe

Department of Medical Biotechnology, Dambi Dollo University, Ethiopia.

Birhan Getie

Department of Biotechnology, University of Gonder, Ethiopia.

*Author to whom correspondence should be addressed.


In terms of pathophysiology, aging is an irreversible process. It presents with decrease in tissue and cell functions and significant increases in the hazards of various aging-related diseases, including cancer, metabolic diseases and immune system diseases. Research on aging has focused on examining how various endogenous and exogenous stressors, including genomic instability, epigenetic alteration, proteostasis loss, compromised autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, and deregulated nutrient sensing, influence aging. In all prokaryotic and eukaryotic organisms, transposable elements are the major cause of genetic instability.

Another common feature of age-related diseases is the accelerated rate of telomere attrition. Due to this, telomere length has been recognized as a reliable biomarker of aging for a long time. Research on the pathogenesis of aging could result in interventions that support health and longevity, as well as clinical treatment methods for aging-related diseases, which could lead to a reduction in the incidence and development of aging-related diseases, thereby promoting healthy aging and longevity.

Keywords: Aging, age-related diseases, telomere length, transposable elements

How to Cite

Mitiku, T., Abebe, B., & Getie , B. (2023). Molecular Mechanism and Implication of Telomer Length and Transposable Element on Biological Aging. Asian Journal of Research in Biosciences, 5(2), 43–58. Retrieved from


Download data is not yet available.


Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience. 2018;40:513-521.

Mkrtchyan GV, Abdelmohsen K, Andreux P, Bagdonaite I, Barzilai N, Brunak S, Cabreiro F, De Cabo R, Campisi J, Cuervo AM. Ardd 2020: From aging mechanisms to interventions. Aging (Albany NY). 2020;12:24484.

Ferrucci L, Gonzalez-Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, De Cabo R. Measuring biological aging in humans: A quest. Aging Cell. 2020;19:e13080.

Victorelli S, Passos JF. Telomeres and cell senescence-size matters not. EBioMedicine. 2017;21:14-20.

McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217:65-77.

MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, Morales J. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res. 2017;45:D896-D901.

Gorenjak V, Akbar S, Stathopoulou MG, Visvikis-Siest S. The future of telomere length in personalized medicine. Front Biosci (Landmark Ed). 2018;23:1628-1654.

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-1217.

Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, Ma S, Guan F. Aging and age-related diseases: From mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165-87.

Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18:595-609.

Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, Jain D, Argos M, Arnett DK, Avery C. Use of > 100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 2019;15:e1008500.

Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, Zhang X-M, Foo S, Nakamizo S, Duan K. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363:eaau0964.

Bacman SR, Kauppila JH, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson N-G, Stewart JB, Moraes CT. Mitotalen reduces mutant mtDNA load and restores tRNAala levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018;24:1696-1700.

Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ, Estève J. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023-1075.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-733.

Asselah T, Lee SS, Yao BB, Nguyen T, Wong F, Mahomed A, Lim SG, Abergel A, Sasadeusz J, Gane E. Efficacy and safety of glecaprevir/pibrentasvir in patients with chronic hepatitis C virus genotype 5 or 6 infection (ENDURANCE-5, 6): An open-label, multicentre, phase 3b trial. Lancet Gastroenterol Hepatol. 2019;4:45-51.

Saretzki G. Telomeres, telomerase and ageing. Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. 2018:221-308.

Ullah M, Sun Z. Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol A Biol Sci Med Sci. 2019;74:1396-1407.

Bernardes De Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4:691-704.

Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6:584-593.

Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol. 2019;54:61-83.

Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J, Joseph K, Garrelfs NW, Strähle J, Heynckes S, Grauvogel J. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun. 2019;10:2541.

Morigi M, Perico L, Benigni A. Sirtuins in renal health and disease. J Am Soc Nephrol. 2018;29:1799.

Maierhofer A, Flunkert J, Oshima J, Martin GM, Poot M, Nanda I, Dittrich M, Müller T, Haaf T. Epigenetic signatures of werner syndrome occur early in life and are distinct from normal epigenetic aging processes. Aging Cell. 2019;18:e12995.

Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51:957-972.

Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454-2465.

Basisty N, Meyer JG, Schilling B. Protein turnover in aging and longevity. Proteomics. 2018;18:1700108.

Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018;217:51-63.

Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106-e116.

Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D'amico D, Moullan N, Potenza F, Schmid AW, Rietsch S. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552:187-193.

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P. The string database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016:gkw937.

De Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Rice DL, Gutierrez-Achury J, Ji S-G. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256-261.

Bitto A, Ito TK, Pineda VV, Letexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B, Smith K. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife. 2016;5:e16351.

Arriola Apelo SI, Lamming DW. Rapamycin: An inhibitor of aging emerges from the soil of easter island. J Gerontol A Biol Sci Med Sci. 2016;71:841-849.

Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev. 2017;37:79-93.

Tomiyama AJ, Milush JM, Lin J, Flynn JM, Kapahi P, Verdin E, Sinclair E, Melov S, Epel ES. Long-term calorie restriction in humans is not associated with indices of delayed immunologic aging: A descriptive study. Nutr Healthy Aging. 2017;4:147-156.

Zaza G, Granata S, Caletti C, Signorini L, Stallone G, Lupo A. mTOR inhibition role in cellular mechanisms. Transplantation. 2018;102:S3-S16.

Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436-453.

Wiley CD, Campisi J. From ancient pathways to aging cells—connecting metabolism and cellular senescence. Cell Metab. 2016;23:1013-1021.

Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978-90.

Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L, Keyes WM. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183.

Baker DJ, Wijshake T, Tchkonia T, Lebrasseur NK, Childs BG, Van De Sluis B, Kirkland JL, Van Deursen JM. Clearance of p16ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232-236.

Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Viña J, Blasco MA, Serrano M. Delayed ageing through damage protection by the ARF/p53 pathway. Nature. 2007;448:375-379.

Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol Rev. 2019;99:1047-1078.

Goodell MA, Rando TA. Stem cells and healthy aging. Science. 2015;350:1199-1204.

Lavasani M, Robinson AR, Lu A, Song M, Feduska JM, Ahani B, Tilstra JS, Feldman CH, Robbins PD, Niedernhofer LJ. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun. 2012;3:608.

Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science. 2011;333:1109-1112.

Kauppila TE, Kauppila JH, Larsson N-G. Mammalian mitochondria and aging: An update. Cell Metab. 2017;25:57-71.

Hekimi S, Lapointe J, Wen Y. Taking a "good" look at free radicals in the aging process. Trends Cell Biol. 2011;21:569-576.

Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 2019;81:19-41.

Lewis KA, Wuttke DS. Telomerase and telomere-associated proteins: Structural insights into mechanism and evolution. Structure. 2012;20:28-39.

Mueller C, Aschacher T, Wolf B, Bergmann M. A role of LINE-1 in telomere regulation. Front Biosci (Schol Ed). 2018;23:1310-1319.

Calado RT, Dumitriu B. Telomere dynamics in mice and humans. Semin Hematol. 2013. Elsevier, 165-174.

Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016;13:696-706.

Cesare AJ, Reddel RR. Alternative lengthening of telomeres: Models, mechanisms and implications. Nat Rev Genet. 2010;11:319-330.

Saito K, Ishizu H, Komai M, Kotani H, Kawamura Y, Nishida KM, Siomi H, Siomi MC. Roles for the Yb body components armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 2010;24:2493-2498.

Burns KH, Boeke JD. Human transposon tectonics. Cell. 2012;149:740-752.

De Koning AJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384.

Huang CRL, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet. 2012;46:651-675.

Venner S, Feschotte C, Biemont C. Dynamics of transposable elements: Towards a community ecology of the genome. Trends Genet. 2009;25:317-323.

Hancks DC, Kazazian Jr HH. Active human retrotransposons: Variation and disease. Curr Opin Genet Dev. 2012;22:191-203.

Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV. Line-1 retrotransposition activity in human genomes. Cell. 2010;141:1159-1170.

Shukla R, Upton KR, Muñoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T, Brennan PM, Baillie JK, Collino A, Ghisletti S. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153:101-111.

Driver C, Mckechnie SW. Transposable elements as a factor in the aging of Drosophila melanogaster. Ann N Y Acad Sci. 1992;673:83-91.

Wood JG, Helfand SL. Chromatin structure and transposable elements in organismal aging. Front Genet. 2013;4:274.

De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N, Sedivy JM. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 2013;12:247-256.

Elsner D, Meusemann K, Korb J. Longevity and transposon defense, the case of termite reproductives. Proc Natl Acad Sci. 2018;115:5504-5509.

Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N. Autophagy in healthy aging and disease. Nat Aging. 2021;1:634-650.

Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17:647-661.

Sun L, Chiang JY, Choi JY, Xiong Z-M, Mao X, Collins FS, Hodes RJ, Cao K. Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proc Natl Acad Sci. 2019;116:18983-18993.

Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, Morales E, Wang G, Gu J, Wang R. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur Heart J. 2021;42:4352-4369.

Gelino S, Hansen M. Autophagy-an emerging anti-aging mechanism. J Clin Exp Pathol.

Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146:682-695.

Harikrishnan S, Jeemon P, Mini G, Thankappan K, Sylaja P. GBD 2017 causes of death collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017.

Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211-217.

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883-899.

Kantono M, Guo B. Inflammasomes and cancer: The dynamic role of the inflammasome in tumor development. Front Immunol. 2017;8:1132.

Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA. Theories of aging and the prevalence of Alzheimer’s disease. BioMed Res Int. 2019;2019.

Xia X, Jiang Q, Mcdermott J, Han JDJ. Aging and Alzheimer's disease: Comparison and associations from molecular to system level. Aging Cell. 2018;17:e12802.

Janczura KJ, Volmar C-H, Sartor GC, Rao SJ, Ricciardi NR, Lambert G, Brothers SP, Wahlestedt C. Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc Natl Acad Sci. 2018;115:E11148-E11157.

Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology. 2010;35:870-880.

Harry GJ. Microglia during development and aging. Pharmacol Ther. 2013;139:313-326.

Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med. 2012;2.

Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, Cimpean M, Khairallah A, Coronas-Samano G, Sankowski R. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11:6129.

Liddelow SA, Barres BA. Reactive astrocytes: Production, function, and therapeutic potential. Immunity. 2017;46:957-967.

Apple DM, Kokovay E. Vascular niche contribution to age-associated neural stem cell dysfunction. Am J Physiol-Heart Circ Physiol. 2017;313:H896-H902.

Zhang F, Duan X, Lu L, Zhang X, Chen M, Mao J, Cao M, Shen J. In vivo long-term tracking of neural stem cells transplanted into an acute ischemic stroke model with reporter gene-based bimodal MR and optical imaging. Cell Transplant. 2017;26:1648-1662.

Jankovic J, Kapadia AS. Functional decline in Parkinson disease. Arch Neurol. 2001;58:1611-1615.

Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: A systematic review and meta-analysis. Mov Disord. 2014;29:1583-1590.

Kanaan NM, Kordower JH, Collier TJ. Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure in monkeys. Glia. 2008;56:1199-1214.

Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res. 2018;123:825-848.

Lakatta EG, Levy D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation. 2003;107:139-146.

Kurz DJ, Kloeckener-Gruissem B, Akhmedov A, et al. Degenerative aortic valve stenosis, but not coronary disease, is associated with shorter telomere length in the elderly. Arterioscler Thromb Vasc Biol. 2006;26:e114-e117.

Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system: Understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69:1952-1967.

Xu X, Wang B, Ren C, et al. Recent progress in vascular aging: Mechanisms and its role in age-related diseases. Aging Dis. 2017;8:486.

Akha AS. Aging and the immune system: An overview. J Immunol Methods. 2018;463:21-26.

Ray D, Yung R. Immune senescence, epigenetics and autoimmunity. Clin Immunol. 2018;196:59-63.

Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol. 2020;145:1309-1321.

Pietrobon AJ, Teixeira FME, Sato MN. Immunosenescence and inflammaging: Risk factors of severe COVID-19 in older people. Front Immunol. 2020;11:579220.

Patrick M, Weng N-P. Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cell Immunol. 2019;345:103989.

Nikolich-Žugich J. The twilight of immunity: Emerging concepts in aging of the immune system. Nat Immunol. 2018;19:10-19.

Van Duin D, Mohanty S, Thomas V, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007;178:970-975.

Manser AR, Uhrberg M. Age-related changes in natural killer cell repertoires: Impact on NK cell function and immune surveillance. Cancer Immunol Immunother. 2016;65:417-426.

Fang M, Roscoe F, Sigal LJ. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med. 2010;207:2369-2381.

Zacca ER, Crespo MI, Acland RP, et al. Aging impairs the ability of conventional dendritic cells to cross-prime CD8+ T cells upon stimulation with a TLR7 ligand. PloS One. 2015;10:e0140672.

Metcalf TU, Cubas RA, Ghneim K, et al. Global analyses revealed age‐related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell. 2015;14:421-432.

Effros RB, Walford RL. The immune response of aged mice to influenza: Diminished T-cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol. 1983;81:298-305.

Tsukamoto H, Huston GE, Dibble J, Duso DK, Swain SL. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J Immunol. 2010;185:4535-4544.

Chiu B-C, Martin BE, Stolberg VR, Chensue SW. Cutting edge: Central memory CD8 T cells in aged mice are virtual memory cells. J Immunol. 2013;191:5793-5796.

Pulko V, Davies JS, Martinez C, et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol. 2016;17:966-975.

Frasca D, Van Der Put E, Riley RL, Blomberg BB. Reduced Ig class switch in aged mice correlates with decreased E47 and activation-induced cytidine deaminase. J Immunol. 2004;172:2155-2162.

Frasca D, Diaz A, Romero M, Blomberg BB. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine. 2016;34:2834-2840.

Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338-345.

Neff F, Flores-Dominguez D, Ryan DP, et al. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest. 2013;123:3272-3291.

Hasty P, Livi CB, Dodds SG, et al. Erapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-178.

Carosi JM, Sargeant TJ. Rapamycin and Alzheimer disease: A double-edged sword? Autophagy. 2019;15:1460-1462.

Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR)—rapamycin and beyond. Cold Spring Harb Perspect Med. 2016;6.

Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15:428-435.

Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell. 2019; 18:e12841.

Hickson LJ, Prata LGL, Bobart SA, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446-456.

Broskey NT, Marlatt KL, Most J, et al. The panacea of human aging: Calorie restriction versus exercise. Exerc Sport Sci Rev. 2019;47:169.

Chimienti G, Picca A, Fracasso F, et al. The age-sensitive efficacy of calorie restriction on mitochondrial biogenesis and mtDNA damage in rat liver. Int J Mol Sci. 2021;22:1665.

Hwangbo D-S, Lee H-Y, Abozaid LS, Min K-J. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients. 2020;12:1194.

Imai S-I, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol Sci. 2010;31:212-220.

Chung K, Kim D, Park M, et al. Recent advances in calorie restriction research on aging. Exp Gerontol. 2013;48:1049-1053.

Rattan SI. Aging is not a disease: Implications for intervention. Aging Dis. 2014;5:196.

Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 2007;26:1913-1923.

Flanagan EW, Most J, Mey JT, Redman LM. Calorie restriction and aging in humans. Annu Rev Nutr. 2020;40:105- 133.

Hermanns J, Asseburg A, Osiewacz HD. Evidence for giant linear plasmids in the ascomycete Podospora anserina. Curr Genet. 1995;27:379-386.

Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554-563.