Forensic Toxicology; a Probe into the Future

Main Article Content

Olawale Otitoju
Ebenezer Morayo Ale
https://orcid.org/0000-0002-6105-1325
Ojochemi Ejeh Yakubu
Ozioma Prince Emmanuel

Abstract

Forensic toxicology is a field of science that deals with the detection, identification and isolation of drugs, chemicals and other xenobiotics in the biological specimens as well as interpreting the results for medical and other legal investigations. This field encompasses toxicologists and other experts in disciplines such as biochemistry, pharmacology, analytical and clinical chemistry and biology for the purpose of investigating death, drug abuse and poisoning medically and legally. Forensic toxicology has found application majorly in postmortem investigations, human performance, doping control and work place drug testing. Forensic analyses can be broadly divided into two categories: presumptive tests which do not specifically identify the compound present in the sample, but only indicate the type of substance present through signs such as colour change and; confirmatory tests that specifically identifies the substance. Confirmatory tests include chromatography techniques as well as combination of chromatography and mass spectrometry techniques. This article reviews the various biological specimens and analytical techniques used for qualitative and quantitative detection and identification of drugs of abuse, poisons and other xenobiotics and also recommends improvement in the present state of art and evolution of new innovations that can foster global use of forensic toxicology in the nearest future.

Keywords:
Toxicology, xenobiotics, chromatography, specimen, post-mortem, ante-mortem, drug abuse

Article Details

How to Cite
Otitoju, O., Morayo Ale, E., Yakubu, O. E., & Emmanuel, O. P. (2022). Forensic Toxicology; a Probe into the Future. Asian Journal of Research in Biosciences, 4(2), 21-34. Retrieved from https://globalpresshub.com/index.php/AJORIB/article/view/1569
Section
Review Articles

References

Bynum ND, Moore KN, Grabenauer M. Evaluation of laser diode thermal desorption-tandem mass spectrometry (LDTD-MS-MS) in forensic toxicology. J Anal Toxicol. 2014;38(8):528- 535.

Cooper GA, Paterson S, Osselton MD. The United Kingdom and Ireland association of forensic toxicologists: forensic toxicology laboratory guidelines. Sci Justice. 2010;50(4):166-176.

Bogusz MJ. Hyphenated liquid chromatographic techniques in forensic toxicology. J Chromatogr B Biomed Sci Appl. 1999;733(1-2):65-91.

Canale M, Bistarini S, Merler M. Chromatography by silica-gel chromatobars. Prospects of its application in the field of forensic toxicology. Arch Toxicol. 1977;37(2):143-147.

Carlier J, Guitton J, Romeuf L, Bevalot F, Boyer B, et al. Screening approach by ultra-high performance liquid chromatography-tandem mass spectrometry for the blood quantification of thirty-four toxic principles of plant origin. Application to forensic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;975:65-76.

Chaturvedi AK, Vu NT, Ritter RM, Canfield DV. DNA typing as a strategy for resolving issues relevant to forensic toxicology. J Forensic Sci. 1999;44(1):189-192.

Uges DR. What is the definition of a poisoning? J Clin Forensic Med. 2001;8:30–33.

Goldberger BA, Polettini A. Forensic toxicology: web resources. Toxicology. 2002;173:97–102.

Plebani M, Carraro P. Mistakes in a stat laboratory: types and frequency. Clin Chem. 1997;43:1348–1351.

Witte DL, Van Ness SA, Angstadt DS, Pennel BJ. Errors, mistakes, blunders, outliers, or unacceptable results: how many? Clin Chem. 1997;43:1352– 1356.

Justin NK. Analytical Methods of Compounds in Biological Specimens: Applications in Forensic Toxicology. Int J Forens Sci. 2017;2(3):000129.

Guidelines FTL. Forensic Toxicology Laboratory Guidelines; 2006.

Wong RC. Drugs of abuse: body fluid testing. Sl: Springer Science & Business Media; 2007.

Barroso M, Gallardo E, Vieira DN, Lopez-Rivadulla M, Queiroz JA. Hair: A complementary source of bioanalytical information in forensic toxicology. Bioanalysis. 2011;3(1):67-79.

Klausz G, Kass K, Sotonyi P, Rona K. Hair analysis of abused and therapeutic drugs in forensic toxicology. Orv Hetil. 2006;147(45):2181-2186.

Baez, H., Castro, M., Benavente, M.A., Klintz, P., Cirimele, V, et al. (2000). Drugs in prehistory: chemical analysis of ancient human hair. Forensic Science International 108(3):173-179.

Boumba VA, Ziavrou KS, Vougiouklakis T. Hair as a biological indicator of drug use, drug abuse or chronic exposure to environmental toxicants. International Journal of Toxicology. 2006;25(3):143-163.

Kharbouche H, Sporkert F, Troxler S, Augsburger M, Mangin P, et al. Development and validation of a gas chromatography-negative chemical ionization tandem mass spectrometry method for the determination of ethyl glucuronide in hair and its application to forensic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(23):2337-2343.

Maze T. Hair Analysis in Clinical and Forensic Toxicology. Occup Med (Lond). 2016;66(9):758-759.

Maublanc J, Dulaurent S, Morichon J, Lachatre G, Gaulier JM. Identification and quantification of 35 psychotropic drugs and metabolites in hair by LC-MS/MS: Application in forensic toxicology. Int J Legal Med. 2015;129(2):259-268.

Pufal E, Sykutera M, Nowacka T, Stefanowicz A, Sliwka K. Development of a method for estimation of citalopram and desmethylcitalopram in nails and hair and its usefulness in forensic toxicology. Arch Med Sadowej Kryminol. 2010;60(4):216-222.

Tagliaro F, Smyth WF, Turrina S, Deyl Z, Marigo M. Capillary electrophoresis: A new tool in forensic toxicology. Applications and prospects in hair analysis for illicit drugs. Forensic Sci Int. 1995;70(1-3):93-104.

Bertaso A, Sorio D, Vandoros A, De Palo EF, Bortolotti F, et al. Use of finger-prick dried blood spots (fpDBS) and capillary electrophoresis for Carbohydrate Deficient Transferrin (CDT) screening in forensic toxicology. Electrophoresis. 2016;37(21):2867-2874.

Dawling S, Ward N, Essex EG, Widdop B. Rapid measurement of basic drugs in blood applied to clinical and forensic toxicology. Ann Clin Biochem. 1990;27(5):473-477.

Dienes-Nagy A, Rivier L, Giroud C, Augsburger M, Mangin P. Method for quantification of morphine and its 3- and 6- glucuronides, codeine, codeine glucuronide and 6-monoacetylmorphine in human blood by liquid chromatography-electrospray mass spectrometry for routine analysis in forensic toxicology. J Chromatogr A. 1999;854(1-2):109-118.

Karinen R, Vindenes V, Hasvold I, Olsen KM, Christophersen AS et al. Determination of a selection of anti-epileptic drugs and two active metabolites in whole blood by reversed phase UPLC-MS/MS and some examples of application of the method in forensic toxicology cases. Drug Test Anal. 2015;7(7):634-644.

Maurer HH. Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin Biochem. 2005;38(4):310-318.

Fenton J, Schaffer M, Chen NW, Bermes EW. A comparison of enzyme immunoassay and gas chromatography/mass spectrometry in forensic toxicology. J Forensic Sci. 1980;25(2):314-319.

Ishii A, Watanabe-Suzuki K, Seno H, Suzuki O, Katsumata Y. Application of gas chromatography-surface ionization organic mass spectrometry to forensic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;776(1):3-14.

Kauert G, Drasch G, von ML. Possibilities of using chemical ionization mass spectrometry with ammonia as the selective reaction gas in forensic toxicology. Beitr Gerichtl Med. 1979;37:329-335.

Marquet P. Progress of liquid chromatography-mass spectrometry in clinical and forensic toxicology. Ther Drug Monit. 2002;24(2):255-276.

Maurer HH. Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicology. Anal Bioanal Chem. 2007;388(7):1315-1325.

Ojanpera I, Kolmonen M, Pelander A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem. 2012;403(5):1203-1220.

Van Bocxlaer JF, Clauwaert KM, Lambert WE, Deforce DL, Van den Eeckhout EG. Liquid chromatography-mass spectrometry in forensic toxicology. Mass Spectrom Rev. 2000;19(4):165-214.

Drummer OH, Gerostamoulos J. Postmortem drug analysis: Analytical and toxicological aspects. Ther Drug Monit. 2002;24:199–209.

Hoiseth G, Bernard JP, Karinen R, Johnsen L, Helander A, et al. A pharmacokinetic study of ethyl glucuronide in blood and urine: Applications to forensic toxicology. Forensic Sci Int. 2007;172(2- 3):119-124.

Meyer GM, Maurer HH, Meyer MR. Multiple stage MS in analysis of plasma, serum, urine and in vitro samples relevant to clinical and forensic toxicology. Bioanalysis. 2016;8(5):457-481.

Philipp AA, Meyer MR, Wissenbach DK, Weber AA, Zoerntlein SW, et al. Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology. Anal Bioanal Chem. 2011;400(1):127-135.

Palmeri A, Pichini S, Pacifici R, Zuccaro P, Lopez A. Drugs in nails: Physiology, pharmacokinetics and forensic toxicology. Clin Pharmacokinet. 2000;38:95–110.

Baumgartner MR. Nails: an adequate alternative matrix in forensic toxicology for drug analysis? Bioanalysis. 2014;6(17):2189- 2191.

Suzuki O, Hattori H, Asano M. Nails as useful materials for detection of methamphetamine or amphetamine abuse. Forensic Sci Int. 1984;24:9–16.

Chen KL, Amarasiriwardena CJ, Christiani DC. Determination of total arsenic concentrations in nails by inductively coupled plasma mass spectrometry. Biol Trace Elem Res. 1999;67:109–125.

Mandal BK, Ogra Y, Anzai K, Suzuki KT. Speciation of arsenic in biological samples. Toxicol Appl Pharmacol. 2004;198:307–318.

Brima EI, Haris PI, Jenkins RO, Polya DA, Gault AG, Harrington CF. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicol Appl Pharmacol. 2006;216:122–130.

Lech T. Exhumation examination to confirm suspicion of fatal lead poisoning. Forensic Sci Int. 2006;158:219–223.

Kile ML, Houseman EA, Breton CV, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani DC. Association between total ingested arsenic and toenail arsenic concentrations. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42:1827–1834.

Sanz E, Munoz-Olivas R, Camara C, Sengupta MK, Ahamed S. Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic affected areas of Middle and Lower Ganga plain. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42:1695–1705.

Karpas Z. Uranium bioassay–beyond urinalysis. Health Phys. 2001;81:460–463.

Karpas Z, Lorber A, Sela H, Paz-Tal O, Hagag Y, Kurttio P, Salonen L. Measurement of the 234U/238U ratio by MC-ICPMS in drinking water, hair, nails and urine as an indicator of uranium exposure source. Health Phys. 2005a;89:315–321.

Karpas Z, Paz-Tal O, Lorber A, Salonen L, Komulainen H, Auvinen A, Saha H, Kurttio P. Urine, hair, and nails as indicators for ingestion of uranium in drinking water. Health Phys. 2005b;88:229–242.

Karpas Z, Lorber A, Sela H, Paz-Tal O, Hagag Y, Kurttio P, Salonen L. Determination of 234U/238U ratio: comparison of multi-collector ICPMS and ICP-QMS for water, hair and nails samples, and comparison with alpha-spectrometry for water samples. Radiat Prot Dosim. 2006;118:106–110.

Pichini S, Altieri I, Zuccaro P, Pacifici R. Drug monitoring in nonconventional biological fluids and matrices. Clin Pharmacokinet. 1996;30:211–228.

Engelhart DA, Lavins ES, Sutheimer CA. Detection of drugs of abuse in nails. J Anal Toxicol. 1998;22:314–318.

Engelhart DA, Jenkins AJ. Detection of cocaine analytes and opiates in nails from postmortem cases. J Anal Toxicol. 2002;26:489–492.

De La Torre R, Farre M, Navarro M, Pacifici R, Zuccaro P, Pichini S. Clinical pharmacokinetics of amfetamine and related substances: Monitoring in conventional and non-conventional matrices. Clin Pharmacokinet. 2004;43:157–185.

Ragoucy-Sengler C, Kintz P. Detection of smoked cocaine marker (anhydroecgonine methylester) in nails. J Anal Toxicol. 2005;29:765–768.

Gray T, Huestis M. Bioanalytical procedures for monitoring in utero drug exposure. Anal Bioanal Chem. 2007;388:1455–1465.

Ali EM, Edwards HG, Hargreaves MD, Scowen IJ. Raman spectroscopic investigation of cocaine hydrochloride on human nail in a forensic context. Anal Bioanal Chem. 2008;390:1159–1166.

Chaturvedi AK, Craft KJ, Kupfer DM, Burian D, Canfield DV. Resolution of aviation forensic toxicology findings with the aid of DNA profiling. Forensic Sci Int. 2011;206(1-3):81-86.

Skopp G. Preanalytic aspects in postmortem toxicology. Forensic Sci Int. 2004;142:75–100.

Kidwell DA, Holland JC, Athanaselis S. Testing for drugs of abuse in saliva and sweat. Journal of Chromatography B Biomed Sciences and Applications. 1998;713(1):111-135.

Eckenhoff JB. Sweat collection patch; 1988.

Sunshine I, Sutliff J. Sweat it out. In: Wong S, Sunshine I, editors. Handbook of analytical therapeutic drug monitoring and toxicology. Boca Raton: CRC Press. 1996;253–264.

Bosker WM, Marilyn AH. Oral fluid testing for drugs of abuse. Clinical Chemistry. 2009;5(11):1910-1931.

de Almeida PDV. Saliva composition and functions: A comprehensive review. J Contemp Dent Pract. 2008;9(3):72-80.

Drummer OH. Drug testing in oral fluid. Clinical Biochemist Reviews. 2006;27(3):147-159.

Skopp G, Potsch L. Perspiration versus saliva–basic aspects concerning their use in roadside drug testing. Int J Legal Med. 1999;112:213–221.

Drummer OH. Postmortem toxicology of drugs of abuse. Forensic Science Inter. 2004;142(23):101-113.

Cooper G. Clarke's analytical forensic toxicology. Pharmaceutical Press; 2013.

Pounder DJ, Smith DR. Postmortem diffusion of alcohol from the stomach. Am J Forensic Med Pathol. 1995;16:89–96.

Pounder DJ, Fuke C, Cox DE, Smith D, Kuroda N. Postmortem diffusion of drugs from gastric residue: an experimental study. Am J Forensic Med Pathol. 1996b;17:1–7.

Karch SB. Postmortem toxicology of abused drugs. Boca Raton, FL: CRC Press; 2008.

Ashraf W. Accumulation of heavy metals in kidney and heart tissues of Epinephelus microdon fish from the Arabian Gulf. Environmental Monitoring and Assessment. 2005;101(1-3):311-316.

Yilmaz O. Cadmium and lead levels in human liver and kidney samples obtained from Bursa Province. Int J Environ Health Res. 2002;12:181–185.

Triunfante P, Soares ME, Santos A, Tavares S, Carmo H, Bastos Mde L. Mercury fatal intoxication: two case reports. Forensic Sci Int. 2009;184:1–6.

Sawyer WR, Forney RB. Postmortem disposition of morphine in rats. Forensic Sci Int. 1988;38:259–273.

Hakim M, Yoav Y, Broza†, Orna Barash†, Nir Peled, et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical Reviews. 2012;112(11):5949-5966.

Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clinical Chemistry and Laboratory Medicine. 2009;47(5):550- 560.

Beck O. Exhaled breath for drugs of abuse testing - evaluation in criminal justice settings. Sci Justice. 2014;54(1):57-60.

Klaassen CD. Casarett & Doull’s toxicology: the basic science of poisons. New York: McGraw-Hill; 2008.

Jickells S, Negrusz A. Clarke’s analytical forensic toxicology. London: Pharmaceutical Press; 2008.

Jenkins AM. Drug testing in alternate biological specimens. Painesville, OH: Humana Press; 2008.

Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol. 2005;71:1–52.

Shen DD, Artru AA, Adkison KK. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliver Rev. 2004;56:1825–1857.

Dinis-Oliveira RJ, Carvalho F, Duarte JA, Remião F, Marques A, Santos A, Magalhães T. Collection of biological samples in forensic toxicology. Toxicology Mechanisms and Methods. 2010;20(7):363–414.

Sorg O, Zennegg M, Schmid P, Fedosyuk R, Valikhnovskyi R, Gaide O, Kniazevych V, Saurat JH. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: Identification and measurement of TCDD metabolites. Lancet. 2009;374:1179–1185.

Levisky JA, Bowerman DL, Jenkins WW, Karch SB. Drug deposition in adipose tissue and skin: evidence for an alternative source of positive sweat patch tests. Forensic Sci Int. 2000;110:35–46.

Levisky JA, Bowerman DL, Jenkins WW, Johnson DG, Karch SB. Drugs in postmortem adipose tissues: evidence of antemortem deposition. Forensic Sci Int. 2001;121:157–160.

Flanagan RJ, Taylor A, Watson ID, Whelpton R. Fundamentals of analytical toxicology. West Sussex: John Wiley & Sons Ltd; 2007.

Paredi P, Shah PL, Montuschi P, Sullivan P, Hodson ME, Kharitonov SA, Barnes PJ. Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax. 1999;54:917–920.

Paredi P, Kharitonov SA, Leak D, Shah PL, Cramer D, Hodson ME, Barnes PJ. Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. Am J Respir Crit Care Med. 2000;161:1247–1251.

Stamyr K, Nord P, Johanson G. Washout kinetics of inhaled hydrogen cyanide in breath. Toxicol Lett. 2008;179:59– 62.

Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, Junger M. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaest. 2009;103:822–827.

Harrison GR, Critchley AD, Mayhew CA, Thompson JM. Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: A feasibility study. Br J Anaesth. 2003;91:797–799.

Suzuki S, Watanabe K. Drugs and poisons in humans: a handbook of practical analysis; 2005.

Anderson CM. Presumptive and confirmatory drug tests. Journal of chemical education. 2005;82(12).

Moffat AC. Clarke's analysis of drugs and poisons; 2004.

Darwish IA. Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances. International Journal of Biomedical Science: IJBS. 2006;2(3):217-235.

Moody DE. Immunoassays in Forensic Toxicology. Encyclopedia of Analytical Chemistry; 2006.

Allen LVJ, Stiles ML. Specificity of the EMIT drug abuse urine assay methods. Clin Toxicol. 1981;18(9):1043- 1065.

Maragos C. Fluorescence Polarization Immunoassay of Mycotoxins: A Review. Toxins. 2009;1(2):196-207.

Elie MP. Microcrystalline Tests in Forensic Drug Analysis Encyclopedia of Analytical Chemistry; 2006.

Penders J. Laboratory guidelines and standards in clinical and forensic toxicology. Accreditation and Quality Assurance. 2006;11(6):284-290.

Liu SY, Woo SO, Koh HL. HPLC and GC–MS screening of Chinese proprietary medicine for undeclared therapeutic substances. J Pharmaceutical and Biomedical Analysis. 2001;24(5-6):983-992.

Curling J. Process chromatography: Five decades of innovation. America. 2007;3:4.

Sherma J. Handbook of thin-layer chromatography; 2003.

GC. Principles of Instrumental Analysis; 2015.

Carson M, Kerrigan S. Quantification of suvorexant in urine using gas chromatography/mass spectrometry. Journal of Chromatography B. 2017;1040:289–294.

Greaves J, Roboz J. Mass Spectrometry for the Novice, CRC Press, Boca Raton, FL, USA; 2008.

Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison, et al. GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters. 2005;579(6):1332-1337.

Ross SA. GC-MS analysis of the total δ9-thc content of both drug-and fiber-type cannabis seeds. J Analytical Toxicology. 2000;24(8):715-717.

Stripp RA. The forensic aspects of poisons. New York: Chelsea House; 2006.