Value-addition of Pomegranate Fruit Peel Biowaste: Microwave Mediated Green Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles

PDF

Published: 2022-04-25

Page: 246-253


P. P. George *

Department of Basic Science and Humanities, Mangalam College of Engineering, (affiliated to APJ Abdul Kalam Technological University, CET campus, Thiruvananthapuram-695016 and approved by AICTE, New Delhi) Mangalam Campus, Vettimukal P.O, Ettumanoor, Kottayam Dist, Kerala 686631, India.

*Author to whom correspondence should be addressed.


Abstract

Green synthetic process is the realistic solution for the nanomaterials preparation. ZnO nanoparticles of size 45 nm have been synthesized by the microwave synthesis by using pomegranate peel extract. This microwave mediated method was found to be an excellent method for the production of other metal oxides as well. From SEM measurements, the morphology of ZnO is nanoparticles and having the diameter in the range of 200-300 nm. In this work, ZnO NPs were found with 8 mm, 10 mm, 12 mm zone of inhibition against Staphylococcus aureus, Proteus Vulgaris, and Morganellamorganii respectively. We discovered the efficient and alternative route for the green synthesis of ZnO NPs using pomegranate peel extract and has excellent advantages over conventional chemical and physical methods.

Keywords: ZnO nanoparticles, pomegranate peel extract, antioxidants, antimicrobial efficacy, bio synthesis


How to Cite

George, P. P. (2022). Value-addition of Pomegranate Fruit Peel Biowaste: Microwave Mediated Green Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles. Asian Basic and Applied Research Journal, 4(1), 246–253. Retrieved from https://globalpresshub.com/index.php/ABAARJ/article/view/1581

Downloads

Download data is not yet available.

References

Agfeldt A, Gratzel M. Chem. Rev. 1995;95:49.

Halperin WP. Rev. Mod. Phys. 1986;58:533.

Henglein A. Chem. Rev. 1989;89:1861.

Stucky GD, Mac Dougall JE. Science. 1990;247:669.

Kresin VV. Phys. Rep. 1992;220:1.

Raghunath A, Perumal E. Int. J. Antimicrob. Agents. 2017;49:137.

Raghupathi KR, Koodali RT, Manna AC. Langmuir. 2011; 27:4020.

W. Salem, D. R. Leitner, F. G. Zingl, G. Schratter, R. Prassl, W. Goessler and S. Schild, Int. J. Med. Microbiol. 2015, 305, 85.

Wang L, Hu C, Shao L. Int. J. Nanomed. 2017;12:1227.

George PP, Yuvasravana R, Devanna N. Material Focus. 2018;7:887.

Yuvasravana R, George PP. Material Focus. 2018;7:857.

Apsana G, George PP. Mat. Foc. 2018;7:628.

N. Jones, B. Ray, K. T. Ranjit and A. C. Manna, FEMS Microbiol. Lett. 2008, 279, 71.

Saif S, Tahir A, Chen Y. Nanomaterials 2016;6:209.

Akbar A, Sadiq MB, Ali I, Muhammad N, Rehman Z, Khan MN, Anal AK. Biocatal. Agric. Biotechnol. 2018;17:36.

Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, I. Choi, Int. J. Mol. Sci. 2019;20:2468.

Fu L, Fu Z. Ceram. Int. 2015;41:2492.

Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Sonawane A. Nanomedicine. 2014;10:1195.

Gold K, Slay B, Knackstedt M, Gaharwar AK. Adv. Ther. 2018;1:1700033.

Lemire JA, Harrison JJ, Turner RJ. Nat. Rev. Microbiol. 2013;11:371.

Ruddaraju LK, Pammi SVN, Sankar GG, Padavala VS, Kolapalli VRM. Asian J. Pharm. Sci. 2019, 15, 42.

Mingos DMP. Chem. Ind. 1994;596.

Caddick S. Tetrahedron. 1995;51:10403.

Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. Alternat. Med. 2015;21:221.

Swain P, Nayak SK, Sasmal A, Behera T, Barik SK, Swain SK, Jayasankar P. World J. Microbiol. Biotechnol. 2014;30:2491.

Ismail T, Sestili P, Akhtar S. J. Ethnopharmacol. 2012;143:397.

Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Microb. Pathog. 2018;123, 505.

Moritz M, Geszke-Moritz M. Chem. Eng. J. 2013;228:596.

Tang ZX, Lv BF, Braz. J. Chem. Eng. 2014;31:591.

Apsana G, George PP. Mat. Foc. 2018;7:790–797.

George PP, Devanna N, Apsana G. J. Bionano. 2018;12:854.

Apsana G, George PP, Devanna N, Yuvasravana R. J. Bionano. 2018;12:191.

Yuvasravana R, George PP, Devanna N. Material Today Proceddings. 2017;10: 10664.

Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, et al. Int. J. Nanomed. 2012;7:483.

Jain D, Daima HK, Kachhwaha S, Kothari SL, Nanomater J. 2009;4:557.

Jurenka JS. Alter. Med. Rev. 2008;13:128.

X-ray Diffraction procedures; H. Klug and L. Alexander Eds.;Wiley: New York. 1962;125.

Chen W, Wang Z, Lin Z, Lin L. J. Appl. Phys. 1997;82:3111.

Kamat PV, Meisel D. J. Phys. Chem. 1989;93:4603.

Kubelka D, Munk L. J. Opt. Soc. Am. 1948;38:448.

Kortum G. Reflectance Spectroscopy; Springer: Berlin; 1973.

Yu SH, Wu YS, Yang J, Han ZH, Xie Y, Qian YT, Liu XM. Chem. Mater. 1998;10:2309.

Zhu JJ, Koltypin Y, Gedanken A. Chem. Mater. 2000;12:73.

Wong EM, Searson PC. Appl. Phys. Lett. 1999;74:2939.

Venkatesan J, Kim SK, Shim M. Nanomaterials. 2016;6:235.

Gold K, Slay B, Knackstedt M, Gaharwar AK. Adv. Ther. 2018;1:1700033.

Huh J, Kwon YJ. J. Control. Release. 2011;156:128.

Swain P, Nayak SK, Sasmal A, Behera T, Barik SK, Swain SK, Jayasankar P. World J. Microbiol. Biotechnol. 2014;30:2491.

Yang JP, Meldrum FC, Fendler JH, J. Phys. Chem. 1995;99:5500.

Apsana G, George PP, Devanna N, Yuvasravana R. J. Bionano. 2017;5:428.

Apsana G, George PP, Devanna N, Yuvasravana R. Mat. Foc. 2018;7:156.

Apsana G, George PP, Devanna N, Yuvasravana R. Asian. J. Pharm. Clinic. Res. 2018;3:384-389.

Apsana G, George PP, Devanna N. Int. J. Pharm. Biosciences. 2017;3:148.

Yuvasravana R, George PP, Devanna N. Int. J. Innov. Res. Sci, Engg. Tech. 2017;6:4.

Yuvasravana R, George PP. Int. J. Nanosci. 2016;1650033.

Yuvasravana R, George PP, Devanna N, Apsana G. J. Bionano. 2018;12:408.