Binomial Transform of the Generalized Hexanacci Sequence

PDF

Published: 2022-01-04

Page: 1-20


Yüksel Soykan *

Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.

*Author to whom correspondence should be addressed.


Abstract

In this paper, we define the binomial transform of the generalized Hexanacci sequence and as special cases, the binomial transform of the Hexanacci and Hexanacci-Lucas sequences will be introduced. We investigate their properties in details. We present Binet’s formulas, generating functions, Simson formulas, recurrence properties, and the summation formulas for these binomial transforms. Moreover, we give some identities related with these binomial transforms.

Keywords: Binomial transform, Hexanacci sequence, Hexanacci numbers, binomial transform of Hexanacci sequence, binomial transform of Hexanacci-Lucas sequence


How to Cite

Soykan, Y. (2022). Binomial Transform of the Generalized Hexanacci Sequence. Asian Basic and Applied Research Journal, 4(1), 1–20. Retrieved from https://globalpresshub.com/index.php/ABAARJ/article/view/1395

Downloads

Download data is not yet available.

References

Natividad LR. On solving Fibonacci-like sequences of fourth, fifth and sixth order. International Journal of Mathematics and Computing. 2013;3(2).

Rathore GPS, Sikhwal O, Choudhary R. Formula for finding nth term of Fibonacci- like sequence of higher order. International Journal of Mathematics and Its Applications. 2016;4(2-D):75-80.

Soykan Y. A study on generalized (r,s,t,u,v,y)-numbers. Journal of Progressive Research in Mathematics. 2020;17(1):54- 72.

Soykan Y. Recurrence properties of generalized Hexanacci. Asian Journal of Advanced Research and Reports. 2021;15(2):85-93. DOI: 10.9734/AJARR/2021/v15i230370

Soykan Y, O¨ Zmen N. On Generalized Hexanacci and Gaussian Generalized Hexanacci Numbers. Turk. J. Math. Comput. Sci. 2021;13(1):25-43. DOI: 10.47000/tjmcs.787578

Sloane NJA. The on-line encyclopedia of integer sequences. Available:http://oeis.org/

Soykan Y. On generalized sixth-order Pell sequence. Journal of Scientific Perspectives. 2020;4(1):49-70. DO˙I: https://doi.org/10.26900/jsp.4.005.

Soykan Y, PolatlıEE. On generalized sixth- order Jacobsthal sequence. Int. J. Adv. Appl. Math. and Mech. 2021;8(3):24-40.

Cook CK, Bacon MR. Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. Annales Mathematicae et Informaticae. 2013;41:27-39.

Soykan Y. Properties of generalized 6- primes numbers. Archives of Current Research International. 2020;20(6):12-30. DOI: 10.9734/ACRI/2020/v20i630199

Howard FT, Saidak F. Zhou’s Theory of Constructing Identities, Congress Numer. 2010;200:225-237.

Kalman D. Generalized Fibonacci numbers by matrix methods. Fibonacci Quarterly. 1982;20(1):73-76.

Wolfram DA. Solving generalized Fibonacci recurrences. Fibonacci Quarterly. 1998;129-145.

Knuth DE. The art of computer programming 3. Reading, MA: Addison Wesley; 1973.

Gould HW. Series transformations for finding recurrences for sequences. The Fibonacci Quarterly. 1990;28(2):166-171.

Haukkanen P. Formal power series for binomial sums of sequences of numbers. The Fibonacci Quarterly. 1993;31(1):28-31.

Prodinger H. Some information about the binomial transform. The Fibonacci Quarterly. 1994;32(5):412-15.

Spivey MZ. Combinatorial sums and finite differences. Discrete Math. 2007;307:3130- 3146. Available:https://doi.org/10.1016/j.disc. 2007.03.052

Bhadouria P, Jhala D, Singh B. Binomial transforms of the k-Lucas sequences and its properties. J. Math. Computer Sci. 2014;8:81-92.

Falco´n S. Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications. 2019;10(3):643-651. DOI: 10.26713/cma.v10i3.1221

Kaplan F, Arzu O¨ zkoc¸ O¨ ztu¨ rk A.O¨ . On the Binomial Transforms of the Horadam Quaternion Sequences. Authorea. December 08, 2020. DOI: 10.22541/au.160743179.90770528/v1

Kızılates¸ C, Tuglu N, C¸ ekim B. Binomial Transform of Quadrapell Sequences and Quadrapell Matrix Sequences. Journal of Science and Arts. 2017;1(38):69-80.

Kwon Y. Binomial transforms of the modified K-Fibonacci-like sequence. International Journal of Mathematics and Computer Science. 2019;14(1):47-59.

Soykan Y. Binomial transform of the generalized Tribonacci sequence. Asian Research Journal of Mathematics. 2020;16(10):26-55. DOI: 10.9734/ARJOM/2020/v16i1030229

Soykan Y. On binomial transform of the generalized reverse 3-primes sequence. International Journal of Advances in Applied Mathematics and Mechanics. 2020;8(2):35- 53.

Soykan Y. A Note on binomial transform of the generalized 3-primes sequence. MathLAB Journal. 2020;7:168-190.

Soykan Y. Binomial transform of the generalized third order Pell sequence.

Communications in Mathematics and Applications. 2021;12(1):71-94. ISSN 0975-8607 (online); 0976-5905 (print). DOI: 10.26713/cma.v12i1.1371

Soykan Y. Notes on binomial transform of the generalized Narayana sequence. Earthline Journal of Mathematical Sciences. 2021;7(1):77-111. Available:https://doi.org/10.34198/ejms. 7121.77111

Uygun S, Erdog˘ du A. Binomial Transforms k-Jacobsthal Sequences. J. Math. Comput. Sci. 2017;7(6):1100-1114. Available:https://doi.org/10.28919/jmcs/3474

Uygun S. The binomial transforms of the generalized (s,t)-Jacobsthal matrix sequence. International Journal of Advances in Applied Mathematics and Mechanics. 2019;6(3):14-20.

Yilmaz N, Taskara N. Binomial transforms of the Padovan and Perrin matrix sequences. Abstract and Applied Analysis; 2013. Article ID 497418, 7 pages. Available:http://dx.doi.org/10.1155/2013/ 497418

Barry P. On Integer-Sequence-Based Constructions of Generalized Pascal Triangles. Journal of Integer Sequences. 2006;9, Article 06.2.4.

Soykan Y. Simson identity of generalized m- step Fibonacci numbers. Int. J. Adv. Appl. Math. and Mech. 2019;7(2):45-56.

Soykan Y. A study on sum formulas of generalized sixth-order linear recurrence sequences. Asian Journal of Advanced Research and Reports. 2020;14(2):36-48. DOI: 10.9734/AJARR/2020/v14i230329